Optimum design of plastic structures under displacement constraints

I. Kaneko, G. Maier

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

This paper deals with the optimum design under given loads, of discrete (truss-like) linearly hardening or non-hardening plastic structures, subject to limitations on displacements and deformations and to linear technological constraints. Basic assumptions are: (i) the "cost" function is linear in the design variables; (ii) no local unstressing occurs under the given proportional loading, so that holonomic plastic laws can be adopted. Both elastic-plastic and rigid-hardening models are considered. A typical mathematical feature of the optimization problem is a (nonlinear, nonconvex) complementarity constraint. For situations where the local resistances, assumed to be design variables, do not affect the local stiffness, a branch-and-bound method is proposed and an alternative quadratic programming approach is envisaged. For situations where local strength and stiffness are coupled, a method is developed consisting basically of iterative applications of the procedure devised for uncoupled cases. The computational efficiency of the solution methods proposed is examined by means of numerical tests.

Original languageEnglish
Pages (from-to)369-391
Number of pages23
JournalComputer Methods in Applied Mechanics and Engineering
Volume27
Issue number3
DOIs
Publication statusPublished - 1981 Jul

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • Physics and Astronomy(all)
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Optimum design of plastic structures under displacement constraints'. Together they form a unique fingerprint.

  • Cite this