Origami-based self-folding of co-cultured NIH/3T3 and HepG2 cells into 3D microstructures

Qian He, Takaharu Okajima, Hiroaki Onoe, Agus Subagyo, Kazuhisa Sueoka, Kaori Kuribayashi-Shigetomi

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

This paper describes an origami-inspired self-folding method to form three-dimensional (3D) microstructures of co-cultured cells. After a confluent monolayer of fibroblasts (NIH/3T3 cells) with loaded hepatocytes (HepG2 cells) was cultured onto two-dimensional (2D) microplates, degradation of the alginate sacrificial layer in the system by addition of alginate lyase triggered NIH/3T3 cells to self-fold the microplates around HepG2 cells, and then 3D cell co-culture microstructures were spontaneously formed. Using this method, we can create a large number of 3D cell co-culture microstructures swiftly with ease in the same time. We find that HepG2 cells confined in the 3D cell co-culture microstructures have an ability to enhance the secreted albumin compared to 2D system in a long culture period. The result indicates that the origami-based cell self-folding technique presented here is useful in regenerative medicine and the preclinical stage of drug development.

Original languageEnglish
Article number4556
JournalScientific reports
Volume8
Issue number1
DOIs
Publication statusPublished - 2018 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Origami-based self-folding of co-cultured NIH/3T3 and HepG2 cells into 3D microstructures'. Together they form a unique fingerprint.

  • Cite this