P-adic elliptic polylogarithm, p-adic eisenstein series and Katz measure

Kenichi Bannai, Guido Kings

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The specializations of the motivic elliptic polylogarithm on the universal elliptic curve to the modular curve are referred to as Eisenstein classes. In this paper, we prove that the syntomic realization of the Eisenstein classes restricted to the ordinary locus of the modular curve may be expressed using p-adic Eisenstein series of negative weight, which are p-adic modular forms defined using the two-variable p-adic measure with values in p-adic modular forms constructed by Katz. The motivation of our research is the p-adic Beilinson conjecture formulated by Perrin-Riou.

Original languageEnglish
Pages (from-to)1609-1654
Number of pages46
JournalAmerican Journal of Mathematics
Volume132
Issue number6
Publication statusPublished - 2010 Dec 1

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'P-adic elliptic polylogarithm, p-adic eisenstein series and Katz measure'. Together they form a unique fingerprint.

Cite this