TY - JOUR
T1 - Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction
AU - Kazoe, Yutaka
AU - Ugajin, Takuya
AU - Ohta, Ryoichi
AU - Mawatari, Kazuma
AU - Kitamori, Takehiko
PY - 2019/11/21
Y1 - 2019/11/21
N2 - In the field of microfluidics, utilizing parallel multiphase flows with immiscible liquid/liquid or gas/liquid interfaces along a microchannel has achieved the integration of various chemical processes for analyses and syntheses. Recently, our group has developed nanofluidics that exploits 100 nm nanochannels to realize ultra-small (aL to fL scale) and highly efficient chemical operations. Novel applications such as single-molecule analyses and single-cell omics are anticipated. However, the formation of parallel multiphase flows in a nanochannel remains challenging. To this end, here we developed a novel method for nanoscale partial hydrophobic surface modification of a nanochannel utilizing a focused ion beam. Hydrophobic and hydrophilic areas could be patterned beside one another even in a 60 nm glass nanochannel. Because this patterning maintained the liquid/liquid interface in the nanochannel based on the difference in wettability, stable aqueous/organic parallel two-phase flow in a 40 fL nanochannel was realized for the first time. Utilizing this flow, nanoscale unit operations involving phase confluence, extraction and phase separation were integrated to demonstrate solvent extraction of a lipid according to the Bligh-Dyer method, which is a broadly used pretreatment process in lipidomics. We accomplished the separation of a lipid and an amino acid in a sample volume of 4 fL (250 times smaller than the pL volume of a single cell) with a processing time of 1 ms (10 000 times faster than that in a microchannel). This study therefore provides a technological breakthrough that advances the field of nanofluidics to allow multiphase chemical processing at fL volumes.
AB - In the field of microfluidics, utilizing parallel multiphase flows with immiscible liquid/liquid or gas/liquid interfaces along a microchannel has achieved the integration of various chemical processes for analyses and syntheses. Recently, our group has developed nanofluidics that exploits 100 nm nanochannels to realize ultra-small (aL to fL scale) and highly efficient chemical operations. Novel applications such as single-molecule analyses and single-cell omics are anticipated. However, the formation of parallel multiphase flows in a nanochannel remains challenging. To this end, here we developed a novel method for nanoscale partial hydrophobic surface modification of a nanochannel utilizing a focused ion beam. Hydrophobic and hydrophilic areas could be patterned beside one another even in a 60 nm glass nanochannel. Because this patterning maintained the liquid/liquid interface in the nanochannel based on the difference in wettability, stable aqueous/organic parallel two-phase flow in a 40 fL nanochannel was realized for the first time. Utilizing this flow, nanoscale unit operations involving phase confluence, extraction and phase separation were integrated to demonstrate solvent extraction of a lipid according to the Bligh-Dyer method, which is a broadly used pretreatment process in lipidomics. We accomplished the separation of a lipid and an amino acid in a sample volume of 4 fL (250 times smaller than the pL volume of a single cell) with a processing time of 1 ms (10 000 times faster than that in a microchannel). This study therefore provides a technological breakthrough that advances the field of nanofluidics to allow multiphase chemical processing at fL volumes.
UR - http://www.scopus.com/inward/record.url?scp=85074552390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074552390&partnerID=8YFLogxK
U2 - 10.1039/c9lc00793h
DO - 10.1039/c9lc00793h
M3 - Article
C2 - 31596292
AN - SCOPUS:85074552390
VL - 19
SP - 3844
EP - 3852
JO - Lab on a Chip - Miniaturisation for Chemistry and Biology
JF - Lab on a Chip - Miniaturisation for Chemistry and Biology
SN - 1473-0197
IS - 22
ER -