Parameterized complexity of sparse linear complementarity problems

Hanna Sumita, Naonori Kakimura, Kazuhisa Makino

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we study the parameterized complexity of the linear complementarity problem (LCP), which is one of the most fundamental mathematical optimization problems. The parameters we focus on are the sparsities of the input and the output of the LCP: the maximum numbers of nonzero entries per row/column in the coefficient matrix and the number of nonzero entries in a solution. Our main result is to present a fixed-parameter algorithm for the LCP with all the parameters. We also show that if we drop any of the three parameters, then the LCP is fixed-parameter intractable. In addition, we discuss the nonexistence of a polynomial kernel for the LCP.

Original languageEnglish
Title of host publication10th International Symposium on Parameterized and Exact Computation, IPEC 2015
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages355-364
Number of pages10
Volume43
ISBN (Electronic)9783939897927
DOIs
Publication statusPublished - 2015 Nov 1
Externally publishedYes
Event10th International Symposium on Parameterized and Exact Computation, IPEC 2015 - Patras, Greece
Duration: 2015 Sep 162015 Sep 18

Other

Other10th International Symposium on Parameterized and Exact Computation, IPEC 2015
CountryGreece
CityPatras
Period15/9/1615/9/18

Fingerprint

Polynomials

Keywords

  • Linear complementarity problem
  • Parameterized complexity
  • Sparsity

ASJC Scopus subject areas

  • Software

Cite this

Sumita, H., Kakimura, N., & Makino, K. (2015). Parameterized complexity of sparse linear complementarity problems. In 10th International Symposium on Parameterized and Exact Computation, IPEC 2015 (Vol. 43, pp. 355-364). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.IPEC.2015.355

Parameterized complexity of sparse linear complementarity problems. / Sumita, Hanna; Kakimura, Naonori; Makino, Kazuhisa.

10th International Symposium on Parameterized and Exact Computation, IPEC 2015. Vol. 43 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2015. p. 355-364.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Sumita, H, Kakimura, N & Makino, K 2015, Parameterized complexity of sparse linear complementarity problems. in 10th International Symposium on Parameterized and Exact Computation, IPEC 2015. vol. 43, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 355-364, 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, Patras, Greece, 15/9/16. https://doi.org/10.4230/LIPIcs.IPEC.2015.355
Sumita H, Kakimura N, Makino K. Parameterized complexity of sparse linear complementarity problems. In 10th International Symposium on Parameterized and Exact Computation, IPEC 2015. Vol. 43. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2015. p. 355-364 https://doi.org/10.4230/LIPIcs.IPEC.2015.355
Sumita, Hanna ; Kakimura, Naonori ; Makino, Kazuhisa. / Parameterized complexity of sparse linear complementarity problems. 10th International Symposium on Parameterized and Exact Computation, IPEC 2015. Vol. 43 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2015. pp. 355-364
@inproceedings{084de8c91b994d298a0449927e32587a,
title = "Parameterized complexity of sparse linear complementarity problems",
abstract = "In this paper, we study the parameterized complexity of the linear complementarity problem (LCP), which is one of the most fundamental mathematical optimization problems. The parameters we focus on are the sparsities of the input and the output of the LCP: the maximum numbers of nonzero entries per row/column in the coefficient matrix and the number of nonzero entries in a solution. Our main result is to present a fixed-parameter algorithm for the LCP with all the parameters. We also show that if we drop any of the three parameters, then the LCP is fixed-parameter intractable. In addition, we discuss the nonexistence of a polynomial kernel for the LCP.",
keywords = "Linear complementarity problem, Parameterized complexity, Sparsity",
author = "Hanna Sumita and Naonori Kakimura and Kazuhisa Makino",
year = "2015",
month = "11",
day = "1",
doi = "10.4230/LIPIcs.IPEC.2015.355",
language = "English",
volume = "43",
pages = "355--364",
booktitle = "10th International Symposium on Parameterized and Exact Computation, IPEC 2015",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",

}

TY - GEN

T1 - Parameterized complexity of sparse linear complementarity problems

AU - Sumita, Hanna

AU - Kakimura, Naonori

AU - Makino, Kazuhisa

PY - 2015/11/1

Y1 - 2015/11/1

N2 - In this paper, we study the parameterized complexity of the linear complementarity problem (LCP), which is one of the most fundamental mathematical optimization problems. The parameters we focus on are the sparsities of the input and the output of the LCP: the maximum numbers of nonzero entries per row/column in the coefficient matrix and the number of nonzero entries in a solution. Our main result is to present a fixed-parameter algorithm for the LCP with all the parameters. We also show that if we drop any of the three parameters, then the LCP is fixed-parameter intractable. In addition, we discuss the nonexistence of a polynomial kernel for the LCP.

AB - In this paper, we study the parameterized complexity of the linear complementarity problem (LCP), which is one of the most fundamental mathematical optimization problems. The parameters we focus on are the sparsities of the input and the output of the LCP: the maximum numbers of nonzero entries per row/column in the coefficient matrix and the number of nonzero entries in a solution. Our main result is to present a fixed-parameter algorithm for the LCP with all the parameters. We also show that if we drop any of the three parameters, then the LCP is fixed-parameter intractable. In addition, we discuss the nonexistence of a polynomial kernel for the LCP.

KW - Linear complementarity problem

KW - Parameterized complexity

KW - Sparsity

UR - http://www.scopus.com/inward/record.url?scp=84958257443&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84958257443&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.IPEC.2015.355

DO - 10.4230/LIPIcs.IPEC.2015.355

M3 - Conference contribution

AN - SCOPUS:84958257443

VL - 43

SP - 355

EP - 364

BT - 10th International Symposium on Parameterized and Exact Computation, IPEC 2015

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -