Pharmacokinetic-pharmacodynamic analysis of antipsychotics-induced extrapyramidal symptoms based on receptor occupancy theory incorporating endogenous dopamine release.

Akiko Matsui-Sakata, Hisakazu Ohtani, Yasufumi Sawada

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

We aimed to analyze the risks of extrapyramidal symptoms (EPS) induced by typical and atypical antipsychotic drugs using a common pharmacokinetic-pharmacodynamic (PK-PD) model based on the receptor occupancy. We collected the data for EPS induced by atypical antipsychotics, risperidone, olanzapine and quetiapine, and a typical antipsychotic, haloperidol from literature and analyzed the following five indices of EPS, the ratio of patients obliged to take anticholinergic medication, the occurrence rates of plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, akathisia, extrapyramidal syndrome, etc.), parkinsonism, akathisia, and extrapyramidal syndrome. We tested two models, i.e., a model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition and a model not considering the endogenous dopamine release, and used them to examine the relationship between the D2 receptor occupancy of endogenous dopamine and the extent of drug-induced EPS. The model incorporating endogenous dopamine release better described the relationship between the mean D2 receptor occupancy of endogenous dopamine and the extent of EPS than the other model, as assessed by the final sum of squares of residuals (final SS) and Akaike's Information Criteria (AIC). Furthermore, the former model could appropriately predict the risks of EPS induced by two other atypical antipsychotics, clozapine and ziprasidone, which were not incorporated into the model development. The developed model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.

Original languageEnglish
Pages (from-to)187-199
Number of pages13
JournalDrug Metabolism and Pharmacokinetics
Volume20
Issue number3
Publication statusPublished - 2005
Externally publishedYes

Fingerprint

Antipsychotic Agents
Dopamine
Pharmacokinetics
Receptor, Serotonin, 5-HT2A
Psychomotor Agitation
olanzapine
Hypokinesia
Dopamine Agents
Risperidone
Dystonia
Clozapine
Cholinergic Antagonists
Parkinsonian Disorders
Tremor
Haloperidol
Inhibition (Psychology)

Cite this

@article{d8050f2f548843b1aebac92c52fddc1b,
title = "Pharmacokinetic-pharmacodynamic analysis of antipsychotics-induced extrapyramidal symptoms based on receptor occupancy theory incorporating endogenous dopamine release.",
abstract = "We aimed to analyze the risks of extrapyramidal symptoms (EPS) induced by typical and atypical antipsychotic drugs using a common pharmacokinetic-pharmacodynamic (PK-PD) model based on the receptor occupancy. We collected the data for EPS induced by atypical antipsychotics, risperidone, olanzapine and quetiapine, and a typical antipsychotic, haloperidol from literature and analyzed the following five indices of EPS, the ratio of patients obliged to take anticholinergic medication, the occurrence rates of plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, akathisia, extrapyramidal syndrome, etc.), parkinsonism, akathisia, and extrapyramidal syndrome. We tested two models, i.e., a model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition and a model not considering the endogenous dopamine release, and used them to examine the relationship between the D2 receptor occupancy of endogenous dopamine and the extent of drug-induced EPS. The model incorporating endogenous dopamine release better described the relationship between the mean D2 receptor occupancy of endogenous dopamine and the extent of EPS than the other model, as assessed by the final sum of squares of residuals (final SS) and Akaike's Information Criteria (AIC). Furthermore, the former model could appropriately predict the risks of EPS induced by two other atypical antipsychotics, clozapine and ziprasidone, which were not incorporated into the model development. The developed model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.",
author = "Akiko Matsui-Sakata and Hisakazu Ohtani and Yasufumi Sawada",
year = "2005",
language = "English",
volume = "20",
pages = "187--199",
journal = "Drug Metabolism and Pharmacokinetics",
issn = "1347-4367",
publisher = "Japanese Society for the Study of Xenobiotics",
number = "3",

}

TY - JOUR

T1 - Pharmacokinetic-pharmacodynamic analysis of antipsychotics-induced extrapyramidal symptoms based on receptor occupancy theory incorporating endogenous dopamine release.

AU - Matsui-Sakata, Akiko

AU - Ohtani, Hisakazu

AU - Sawada, Yasufumi

PY - 2005

Y1 - 2005

N2 - We aimed to analyze the risks of extrapyramidal symptoms (EPS) induced by typical and atypical antipsychotic drugs using a common pharmacokinetic-pharmacodynamic (PK-PD) model based on the receptor occupancy. We collected the data for EPS induced by atypical antipsychotics, risperidone, olanzapine and quetiapine, and a typical antipsychotic, haloperidol from literature and analyzed the following five indices of EPS, the ratio of patients obliged to take anticholinergic medication, the occurrence rates of plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, akathisia, extrapyramidal syndrome, etc.), parkinsonism, akathisia, and extrapyramidal syndrome. We tested two models, i.e., a model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition and a model not considering the endogenous dopamine release, and used them to examine the relationship between the D2 receptor occupancy of endogenous dopamine and the extent of drug-induced EPS. The model incorporating endogenous dopamine release better described the relationship between the mean D2 receptor occupancy of endogenous dopamine and the extent of EPS than the other model, as assessed by the final sum of squares of residuals (final SS) and Akaike's Information Criteria (AIC). Furthermore, the former model could appropriately predict the risks of EPS induced by two other atypical antipsychotics, clozapine and ziprasidone, which were not incorporated into the model development. The developed model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.

AB - We aimed to analyze the risks of extrapyramidal symptoms (EPS) induced by typical and atypical antipsychotic drugs using a common pharmacokinetic-pharmacodynamic (PK-PD) model based on the receptor occupancy. We collected the data for EPS induced by atypical antipsychotics, risperidone, olanzapine and quetiapine, and a typical antipsychotic, haloperidol from literature and analyzed the following five indices of EPS, the ratio of patients obliged to take anticholinergic medication, the occurrence rates of plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, akathisia, extrapyramidal syndrome, etc.), parkinsonism, akathisia, and extrapyramidal syndrome. We tested two models, i.e., a model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition and a model not considering the endogenous dopamine release, and used them to examine the relationship between the D2 receptor occupancy of endogenous dopamine and the extent of drug-induced EPS. The model incorporating endogenous dopamine release better described the relationship between the mean D2 receptor occupancy of endogenous dopamine and the extent of EPS than the other model, as assessed by the final sum of squares of residuals (final SS) and Akaike's Information Criteria (AIC). Furthermore, the former model could appropriately predict the risks of EPS induced by two other atypical antipsychotics, clozapine and ziprasidone, which were not incorporated into the model development. The developed model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.

UR - http://www.scopus.com/inward/record.url?scp=25644460070&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=25644460070&partnerID=8YFLogxK

M3 - Article

C2 - 15988121

AN - SCOPUS:25644460070

VL - 20

SP - 187

EP - 199

JO - Drug Metabolism and Pharmacokinetics

JF - Drug Metabolism and Pharmacokinetics

SN - 1347-4367

IS - 3

ER -