Photodissociation of gas-phase I3-: Comprehensive understanding of nonadiabatic dissociation dynamics

Ryuzo Nakanishi, Naoya Saitou, Tomoyo Ohno, Satomi Kowashi, Satoshi Yabushita, Takashi Nagata

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I- (S1) +I (P 32 2) +I (P 32 2) with the yield of ≈30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the Πu3 (0u+) g+1 (0g+) excitation proceeds as I- (S1) + I2 (X g+1) I2 (A Π 1u 3) or I (P 32 2) + I2- (X u+2) with the yield of ≈60%, while that via the u+1 (0u+) g+1 (0g+) excitation alternatively as I* (P 12 2) + I2- (X u+2) or I- (S1) + I2 (B Πu3) with the yield of ≈60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.

Original languageEnglish
Article number204311
JournalJournal of Chemical Physics
Volume126
Issue number20
DOIs
Publication statusPublished - 2007

Fingerprint

Photodissociation
photodissociation
Gases
dissociation
vapor phases
Potential energy surfaces
Excitation energy
Angular distribution
Iodides
excitation
Kinetic energy
Ground state
Anions
Mass spectrometry
Orbits
Ions
intersections
iodides
configuration interaction
Atoms

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Photodissociation of gas-phase I3- : Comprehensive understanding of nonadiabatic dissociation dynamics. / Nakanishi, Ryuzo; Saitou, Naoya; Ohno, Tomoyo; Kowashi, Satomi; Yabushita, Satoshi; Nagata, Takashi.

In: Journal of Chemical Physics, Vol. 126, No. 20, 204311, 2007.

Research output: Contribution to journalArticle

Nakanishi, Ryuzo ; Saitou, Naoya ; Ohno, Tomoyo ; Kowashi, Satomi ; Yabushita, Satoshi ; Nagata, Takashi. / Photodissociation of gas-phase I3- : Comprehensive understanding of nonadiabatic dissociation dynamics. In: Journal of Chemical Physics. 2007 ; Vol. 126, No. 20.
@article{557472b3769e4c4891f6b14687a4741e,
title = "Photodissociation of gas-phase I3-: Comprehensive understanding of nonadiabatic dissociation dynamics",
abstract = "Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the {"}charge-asymmetric{"} process I- (S1) +I (P 32 2) +I (P 32 2) with the yield of ≈30{\%}-40{\%}, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the Πu3 (0u+) g+1 (0g+) excitation proceeds as I- (S1) + I2 (X g+1) I2 (A Π 1u 3) or I (P 32 2) + I2- (X u+2) with the yield of ≈60{\%}, while that via the u+1 (0u+) g+1 (0g+) excitation alternatively as I* (P 12 2) + I2- (X u+2) or I- (S1) + I2 (B Πu3) with the yield of ≈60{\%}. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.",
author = "Ryuzo Nakanishi and Naoya Saitou and Tomoyo Ohno and Satomi Kowashi and Satoshi Yabushita and Takashi Nagata",
year = "2007",
doi = "10.1063/1.2736691",
language = "English",
volume = "126",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "20",

}

TY - JOUR

T1 - Photodissociation of gas-phase I3-

T2 - Comprehensive understanding of nonadiabatic dissociation dynamics

AU - Nakanishi, Ryuzo

AU - Saitou, Naoya

AU - Ohno, Tomoyo

AU - Kowashi, Satomi

AU - Yabushita, Satoshi

AU - Nagata, Takashi

PY - 2007

Y1 - 2007

N2 - Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I- (S1) +I (P 32 2) +I (P 32 2) with the yield of ≈30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the Πu3 (0u+) g+1 (0g+) excitation proceeds as I- (S1) + I2 (X g+1) I2 (A Π 1u 3) or I (P 32 2) + I2- (X u+2) with the yield of ≈60%, while that via the u+1 (0u+) g+1 (0g+) excitation alternatively as I* (P 12 2) + I2- (X u+2) or I- (S1) + I2 (B Πu3) with the yield of ≈60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.

AB - Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I- (S1) +I (P 32 2) +I (P 32 2) with the yield of ≈30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the Πu3 (0u+) g+1 (0g+) excitation proceeds as I- (S1) + I2 (X g+1) I2 (A Π 1u 3) or I (P 32 2) + I2- (X u+2) with the yield of ≈60%, while that via the u+1 (0u+) g+1 (0g+) excitation alternatively as I* (P 12 2) + I2- (X u+2) or I- (S1) + I2 (B Πu3) with the yield of ≈60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.

UR - http://www.scopus.com/inward/record.url?scp=34249866854&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249866854&partnerID=8YFLogxK

U2 - 10.1063/1.2736691

DO - 10.1063/1.2736691

M3 - Article

AN - SCOPUS:34249866854

VL - 126

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 20

M1 - 204311

ER -