Photoelectrochemistry of stacked-cup carbon nanotube films. Tube-length dependence and charge transfer with excited porphyrin

Taku Hasobe, Hideyuki Murata, Prashant V. Kamat

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Photoelectrochemical solar cells are constructed with stacked-cup carbon nanotubes (SCCNT) on optically transparent electrodes (OTE). Three SCCNT samples with different tube lengths (long type, L-SCCNT; medium type, M-SCCNT; and short type, S-SCCNT) were electrophoretically deposited on OTE/SnO 2 electrodes to probe the tube-length dependence of the photoelectrochemical behavior. The maximum incident photon-to-photocurrent efficiency (IPCE) of 19% is attained at an applied bias potential of 0.2 V vs SCE in OTE/SnO 2/L-SCCNT. The power conversion efficiencies (η) of SCCNT-modified electrodes increase with increasing tube length. The maximum power conversion efficiency (η) of OTE/SnO 2/L-SCCNT electrode is determined to be 0.11%, which is about 6 times greater than that of the OTE/SnO 2/S-SCCNT electrode (0.018%). Molecular assemblies composed of S-SCCNT and 5,15-bis(3,5-di-tert-butylphenyl)porphyrin (H 2P) prepared in acetonitrile/toluene (5/1, v/v) were deposited as three-dimensional arrays onto nanostructured SnO 2 films to further improve the photoelectrochemical response in the visible region. The composite electrode of S-SCCNT-H 2P (OTE/SnO 2/S-SCCNT-H 2P) exhibits an IPCE of 32% under an applied potential of 0.2 V vs SCE. The observed increase in IPCE is greater than that of the additive effects observed from the single component systems (viz., OTE/SnO 2/S-SCCNT or OTE/SnO 2/H 2P). Improved efficiency of the photocurrent generation is ascribed to the ability of SCCNT in promoting photoinduced charge separation by accepting electrons from excited H 2P and transporting to the collecting electrode surface.

Original languageEnglish
Pages (from-to)16626-16634
Number of pages9
JournalJournal of Physical Chemistry C
Volume111
Issue number44
DOIs
Publication statusPublished - 2007 Nov 8
Externally publishedYes

Fingerprint

photoelectrochemistry
Carbon Nanotubes
Porphyrins
porphyrins
Charge transfer
Carbon nanotubes
carbon nanotubes
charge transfer
tubes
Electrodes
electrodes
Photocurrents
photocurrents
Photons
Conversion efficiency
photons
Electron tubes
Toluene
polarization (charge separation)

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films
  • Energy(all)

Cite this

Photoelectrochemistry of stacked-cup carbon nanotube films. Tube-length dependence and charge transfer with excited porphyrin. / Hasobe, Taku; Murata, Hideyuki; Kamat, Prashant V.

In: Journal of Physical Chemistry C, Vol. 111, No. 44, 08.11.2007, p. 16626-16634.

Research output: Contribution to journalArticle

@article{1bda499227a04e43af30e337a4acd64c,
title = "Photoelectrochemistry of stacked-cup carbon nanotube films. Tube-length dependence and charge transfer with excited porphyrin",
abstract = "Photoelectrochemical solar cells are constructed with stacked-cup carbon nanotubes (SCCNT) on optically transparent electrodes (OTE). Three SCCNT samples with different tube lengths (long type, L-SCCNT; medium type, M-SCCNT; and short type, S-SCCNT) were electrophoretically deposited on OTE/SnO 2 electrodes to probe the tube-length dependence of the photoelectrochemical behavior. The maximum incident photon-to-photocurrent efficiency (IPCE) of 19{\%} is attained at an applied bias potential of 0.2 V vs SCE in OTE/SnO 2/L-SCCNT. The power conversion efficiencies (η) of SCCNT-modified electrodes increase with increasing tube length. The maximum power conversion efficiency (η) of OTE/SnO 2/L-SCCNT electrode is determined to be 0.11{\%}, which is about 6 times greater than that of the OTE/SnO 2/S-SCCNT electrode (0.018{\%}). Molecular assemblies composed of S-SCCNT and 5,15-bis(3,5-di-tert-butylphenyl)porphyrin (H 2P) prepared in acetonitrile/toluene (5/1, v/v) were deposited as three-dimensional arrays onto nanostructured SnO 2 films to further improve the photoelectrochemical response in the visible region. The composite electrode of S-SCCNT-H 2P (OTE/SnO 2/S-SCCNT-H 2P) exhibits an IPCE of 32{\%} under an applied potential of 0.2 V vs SCE. The observed increase in IPCE is greater than that of the additive effects observed from the single component systems (viz., OTE/SnO 2/S-SCCNT or OTE/SnO 2/H 2P). Improved efficiency of the photocurrent generation is ascribed to the ability of SCCNT in promoting photoinduced charge separation by accepting electrons from excited H 2P and transporting to the collecting electrode surface.",
author = "Taku Hasobe and Hideyuki Murata and Kamat, {Prashant V.}",
year = "2007",
month = "11",
day = "8",
doi = "10.1021/jp074995k",
language = "English",
volume = "111",
pages = "16626--16634",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "44",

}

TY - JOUR

T1 - Photoelectrochemistry of stacked-cup carbon nanotube films. Tube-length dependence and charge transfer with excited porphyrin

AU - Hasobe, Taku

AU - Murata, Hideyuki

AU - Kamat, Prashant V.

PY - 2007/11/8

Y1 - 2007/11/8

N2 - Photoelectrochemical solar cells are constructed with stacked-cup carbon nanotubes (SCCNT) on optically transparent electrodes (OTE). Three SCCNT samples with different tube lengths (long type, L-SCCNT; medium type, M-SCCNT; and short type, S-SCCNT) were electrophoretically deposited on OTE/SnO 2 electrodes to probe the tube-length dependence of the photoelectrochemical behavior. The maximum incident photon-to-photocurrent efficiency (IPCE) of 19% is attained at an applied bias potential of 0.2 V vs SCE in OTE/SnO 2/L-SCCNT. The power conversion efficiencies (η) of SCCNT-modified electrodes increase with increasing tube length. The maximum power conversion efficiency (η) of OTE/SnO 2/L-SCCNT electrode is determined to be 0.11%, which is about 6 times greater than that of the OTE/SnO 2/S-SCCNT electrode (0.018%). Molecular assemblies composed of S-SCCNT and 5,15-bis(3,5-di-tert-butylphenyl)porphyrin (H 2P) prepared in acetonitrile/toluene (5/1, v/v) were deposited as three-dimensional arrays onto nanostructured SnO 2 films to further improve the photoelectrochemical response in the visible region. The composite electrode of S-SCCNT-H 2P (OTE/SnO 2/S-SCCNT-H 2P) exhibits an IPCE of 32% under an applied potential of 0.2 V vs SCE. The observed increase in IPCE is greater than that of the additive effects observed from the single component systems (viz., OTE/SnO 2/S-SCCNT or OTE/SnO 2/H 2P). Improved efficiency of the photocurrent generation is ascribed to the ability of SCCNT in promoting photoinduced charge separation by accepting electrons from excited H 2P and transporting to the collecting electrode surface.

AB - Photoelectrochemical solar cells are constructed with stacked-cup carbon nanotubes (SCCNT) on optically transparent electrodes (OTE). Three SCCNT samples with different tube lengths (long type, L-SCCNT; medium type, M-SCCNT; and short type, S-SCCNT) were electrophoretically deposited on OTE/SnO 2 electrodes to probe the tube-length dependence of the photoelectrochemical behavior. The maximum incident photon-to-photocurrent efficiency (IPCE) of 19% is attained at an applied bias potential of 0.2 V vs SCE in OTE/SnO 2/L-SCCNT. The power conversion efficiencies (η) of SCCNT-modified electrodes increase with increasing tube length. The maximum power conversion efficiency (η) of OTE/SnO 2/L-SCCNT electrode is determined to be 0.11%, which is about 6 times greater than that of the OTE/SnO 2/S-SCCNT electrode (0.018%). Molecular assemblies composed of S-SCCNT and 5,15-bis(3,5-di-tert-butylphenyl)porphyrin (H 2P) prepared in acetonitrile/toluene (5/1, v/v) were deposited as three-dimensional arrays onto nanostructured SnO 2 films to further improve the photoelectrochemical response in the visible region. The composite electrode of S-SCCNT-H 2P (OTE/SnO 2/S-SCCNT-H 2P) exhibits an IPCE of 32% under an applied potential of 0.2 V vs SCE. The observed increase in IPCE is greater than that of the additive effects observed from the single component systems (viz., OTE/SnO 2/S-SCCNT or OTE/SnO 2/H 2P). Improved efficiency of the photocurrent generation is ascribed to the ability of SCCNT in promoting photoinduced charge separation by accepting electrons from excited H 2P and transporting to the collecting electrode surface.

UR - http://www.scopus.com/inward/record.url?scp=36349021258&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36349021258&partnerID=8YFLogxK

U2 - 10.1021/jp074995k

DO - 10.1021/jp074995k

M3 - Article

VL - 111

SP - 16626

EP - 16634

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 44

ER -