Practical homeostasis lighting control system using sensor agent robots for office space

Momoko Tokiwa, Akira Mita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

The comfortable space can be changed by season, age, physical condition and the like. However, the current systems are not able to resolve them absolutely. This research proposes the Homeostasis lighting control system based on the mechanism of biotic homeostasis for making the algorithms of apparatus control. Homeostasis are kept by the interaction of the three systems, endocrine system, immune system, and nervous system[1]. By the gradual reaction in the endocrine system, body's protective response in the immune system, and the electrical reaction in the nerve system, we can keep the environments against variable changes. The new lighting control system utilizes this mechanism. Firstly, we focused on legibility and comfort in the office space to construct the control model learning from the endocrine and immune systems. The mechanism of the endocrine system is used for ambient lights in the space is used considering circadian rhythm for comfort. For the legibility, the immune system is used to control considering devices near the human depending on the distance between the human. Simulations and the demonstration were conducted to show the feasibility. Finally, the nerve system was intruded to enhance the system.

Original languageEnglish
Title of host publicationSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
PublisherSPIE
ISBN (Print)9780819499875
DOIs
Publication statusPublished - 2014 Jan 1
EventSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014 - San Diego, CA, United States
Duration: 2014 Mar 102014 Mar 13

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9061
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
Country/TerritoryUnited States
CitySan Diego, CA
Period14/3/1014/3/13

Keywords

  • Endocrine System
  • Homeostasis
  • Immune System
  • Lighting Control
  • Nervous System
  • Office Space

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Practical homeostasis lighting control system using sensor agent robots for office space'. Together they form a unique fingerprint.

Cite this