Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer

Yuko Okamoto, Kazuaki Taguchi, Mina Sakuragi, Shuhei Imoto, Keishi Yamasaki, Masaki Otagiri

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Paclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin. Since PTX is able to noncovalently bind to albumin, we attempted to prepare PTX-loaded BSA-liposome (PTX-BSA-liposome). The amount of PTX loaded in the BSA-liposome could be increased substantially by using ethanol, since ethanol increases PTX solubility in BSA solutions via prompting the binding PTX to BSA. On the basis of the results of transmission electron microscopy and small-angle X-ray scattering, PTX-BSA-liposome formed unilamellar vesicles that were spherical in shape and the PTX was encapsulated into the inner aqueous core of the liposome as a form of PTX-BSA complex. In addition, the PTX-BSA-liposome, as well as nab-PTX, showed cytotoxicity against human pancreatic cancer cells, AsPC-1 cells, in a PTX concentration-dependent manner. The in vivo antitumor effect of PTX-BSA-liposomes was also observed in a mouse model that had been subcutaneously inoculated with pancreatic cancer cells by virtue of its high accumulation at the tumor site via the enhanced permeability retention effect. These results suggest that PTX-BSA-liposomes have the potential for serving as a novel PTX preparation method for the treatment of pancreatic cancer.

Original languageEnglish
Pages (from-to)8693-8700
Number of pages8
JournalACS Omega
Volume4
Issue number5
DOIs
Publication statusPublished - 2019 May 17

Fingerprint

Liposomes
Paclitaxel
Bovine Serum Albumin
Membrane Lipids
Albumin-Bound Paclitaxel
Ethanol
Solubility
Cells
Albumins
Oncology
Cytotoxicity
X ray scattering
Unilamellar Liposomes
Tumors
Transmission electron microscopy

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Cite this

Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer. / Okamoto, Yuko; Taguchi, Kazuaki; Sakuragi, Mina; Imoto, Shuhei; Yamasaki, Keishi; Otagiri, Masaki.

In: ACS Omega, Vol. 4, No. 5, 17.05.2019, p. 8693-8700.

Research output: Contribution to journalArticle

Okamoto, Yuko ; Taguchi, Kazuaki ; Sakuragi, Mina ; Imoto, Shuhei ; Yamasaki, Keishi ; Otagiri, Masaki. / Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer. In: ACS Omega. 2019 ; Vol. 4, No. 5. pp. 8693-8700.
@article{ed7e6766de344df4a073c636e784e6b3,
title = "Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer",
abstract = "Paclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin. Since PTX is able to noncovalently bind to albumin, we attempted to prepare PTX-loaded BSA-liposome (PTX-BSA-liposome). The amount of PTX loaded in the BSA-liposome could be increased substantially by using ethanol, since ethanol increases PTX solubility in BSA solutions via prompting the binding PTX to BSA. On the basis of the results of transmission electron microscopy and small-angle X-ray scattering, PTX-BSA-liposome formed unilamellar vesicles that were spherical in shape and the PTX was encapsulated into the inner aqueous core of the liposome as a form of PTX-BSA complex. In addition, the PTX-BSA-liposome, as well as nab-PTX, showed cytotoxicity against human pancreatic cancer cells, AsPC-1 cells, in a PTX concentration-dependent manner. The in vivo antitumor effect of PTX-BSA-liposomes was also observed in a mouse model that had been subcutaneously inoculated with pancreatic cancer cells by virtue of its high accumulation at the tumor site via the enhanced permeability retention effect. These results suggest that PTX-BSA-liposomes have the potential for serving as a novel PTX preparation method for the treatment of pancreatic cancer.",
author = "Yuko Okamoto and Kazuaki Taguchi and Mina Sakuragi and Shuhei Imoto and Keishi Yamasaki and Masaki Otagiri",
year = "2019",
month = "5",
day = "17",
doi = "10.1021/acsomega.9b00537",
language = "English",
volume = "4",
pages = "8693--8700",
journal = "ACS Omega",
issn = "2470-1343",
publisher = "American Chemical Society",
number = "5",

}

TY - JOUR

T1 - Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer

AU - Okamoto, Yuko

AU - Taguchi, Kazuaki

AU - Sakuragi, Mina

AU - Imoto, Shuhei

AU - Yamasaki, Keishi

AU - Otagiri, Masaki

PY - 2019/5/17

Y1 - 2019/5/17

N2 - Paclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin. Since PTX is able to noncovalently bind to albumin, we attempted to prepare PTX-loaded BSA-liposome (PTX-BSA-liposome). The amount of PTX loaded in the BSA-liposome could be increased substantially by using ethanol, since ethanol increases PTX solubility in BSA solutions via prompting the binding PTX to BSA. On the basis of the results of transmission electron microscopy and small-angle X-ray scattering, PTX-BSA-liposome formed unilamellar vesicles that were spherical in shape and the PTX was encapsulated into the inner aqueous core of the liposome as a form of PTX-BSA complex. In addition, the PTX-BSA-liposome, as well as nab-PTX, showed cytotoxicity against human pancreatic cancer cells, AsPC-1 cells, in a PTX concentration-dependent manner. The in vivo antitumor effect of PTX-BSA-liposomes was also observed in a mouse model that had been subcutaneously inoculated with pancreatic cancer cells by virtue of its high accumulation at the tumor site via the enhanced permeability retention effect. These results suggest that PTX-BSA-liposomes have the potential for serving as a novel PTX preparation method for the treatment of pancreatic cancer.

AB - Paclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin. Since PTX is able to noncovalently bind to albumin, we attempted to prepare PTX-loaded BSA-liposome (PTX-BSA-liposome). The amount of PTX loaded in the BSA-liposome could be increased substantially by using ethanol, since ethanol increases PTX solubility in BSA solutions via prompting the binding PTX to BSA. On the basis of the results of transmission electron microscopy and small-angle X-ray scattering, PTX-BSA-liposome formed unilamellar vesicles that were spherical in shape and the PTX was encapsulated into the inner aqueous core of the liposome as a form of PTX-BSA complex. In addition, the PTX-BSA-liposome, as well as nab-PTX, showed cytotoxicity against human pancreatic cancer cells, AsPC-1 cells, in a PTX concentration-dependent manner. The in vivo antitumor effect of PTX-BSA-liposomes was also observed in a mouse model that had been subcutaneously inoculated with pancreatic cancer cells by virtue of its high accumulation at the tumor site via the enhanced permeability retention effect. These results suggest that PTX-BSA-liposomes have the potential for serving as a novel PTX preparation method for the treatment of pancreatic cancer.

UR - http://www.scopus.com/inward/record.url?scp=85065873678&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065873678&partnerID=8YFLogxK

U2 - 10.1021/acsomega.9b00537

DO - 10.1021/acsomega.9b00537

M3 - Article

VL - 4

SP - 8693

EP - 8700

JO - ACS Omega

JF - ACS Omega

SN - 2470-1343

IS - 5

ER -