Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules

Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

Research output: Contribution to journalArticle

105 Citations (Scopus)

Abstract

We have prepared poly(N-isopropylacrylamide (IPAAm)-co-2-(dimethylamino)ethylmethacrylate (DMAEMA)) brush-grafted silica bead surfaces through surface-initiated atom transfer radical polymerization (ATRP) using the CUCl/CUCl2/Me6TREN catalytic system in 2-propanol at 25 °C for 16 h. The prepared temperature-responsive surfaces were characterized by chromatographic analysis using the modified silica beads as stationary phases. Chromatographic retention times for adenosine nucleotides in aqueous mobile phases were significantly increased compared to that previously reported for other cationic hydrogel surfaces, indicating that strong electrostatic cationic copolymer brush interactions occur between the surfaces and nucleotide analytes. Retention times for adenosine nucleotides significantly decreased with increasing column temperature, explained by the decreasing basicity in the copolymer with increasing temperature. Step-temperature gradients from 10 to 50 °C shorten ATP retention times. These results indicate that cationic copolymer brush surfaces prepared by ATRP can rapidly alter their electrostatic properties by changing aqueous temperature.

Original languageEnglish
Pages (from-to)1340-1347
Number of pages8
JournalBiomacromolecules
Volume9
Issue number4
DOIs
Publication statusPublished - 2008 Apr

Fingerprint

Biomolecules
Brushes
Copolymers
Temperature
Nucleotides
Static Electricity
Polymerization
Silicon Dioxide
Atom transfer radical polymerization
Adenosine
Electrostatics
Silica
Chromatographic analysis
2-Propanol
Hydrogel
Adenosinetriphosphate
Propanol
Chromatography
Alkalinity
Hydrogels

ASJC Scopus subject areas

  • Organic Chemistry
  • Biochemistry, Genetics and Molecular Biology(all)
  • Polymers and Plastics
  • Materials Chemistry

Cite this

Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules. / Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo.

In: Biomacromolecules, Vol. 9, No. 4, 04.2008, p. 1340-1347.

Research output: Contribution to journalArticle

Nagase, Kenichi ; Kobayashi, Jun ; Kikuchi, Akihiko ; Akiyama, Yoshikatsu ; Kanazawa, Hideko ; Okano, Teruo. / Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules. In: Biomacromolecules. 2008 ; Vol. 9, No. 4. pp. 1340-1347.
@article{1ecaea467f4c47dc853d958d399e843e,
title = "Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules",
abstract = "We have prepared poly(N-isopropylacrylamide (IPAAm)-co-2-(dimethylamino)ethylmethacrylate (DMAEMA)) brush-grafted silica bead surfaces through surface-initiated atom transfer radical polymerization (ATRP) using the CUCl/CUCl2/Me6TREN catalytic system in 2-propanol at 25 °C for 16 h. The prepared temperature-responsive surfaces were characterized by chromatographic analysis using the modified silica beads as stationary phases. Chromatographic retention times for adenosine nucleotides in aqueous mobile phases were significantly increased compared to that previously reported for other cationic hydrogel surfaces, indicating that strong electrostatic cationic copolymer brush interactions occur between the surfaces and nucleotide analytes. Retention times for adenosine nucleotides significantly decreased with increasing column temperature, explained by the decreasing basicity in the copolymer with increasing temperature. Step-temperature gradients from 10 to 50 °C shorten ATP retention times. These results indicate that cationic copolymer brush surfaces prepared by ATRP can rapidly alter their electrostatic properties by changing aqueous temperature.",
author = "Kenichi Nagase and Jun Kobayashi and Akihiko Kikuchi and Yoshikatsu Akiyama and Hideko Kanazawa and Teruo Okano",
year = "2008",
month = "4",
doi = "10.1021/bm701427m",
language = "English",
volume = "9",
pages = "1340--1347",
journal = "Biomacromolecules",
issn = "1525-7797",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules

AU - Nagase, Kenichi

AU - Kobayashi, Jun

AU - Kikuchi, Akihiko

AU - Akiyama, Yoshikatsu

AU - Kanazawa, Hideko

AU - Okano, Teruo

PY - 2008/4

Y1 - 2008/4

N2 - We have prepared poly(N-isopropylacrylamide (IPAAm)-co-2-(dimethylamino)ethylmethacrylate (DMAEMA)) brush-grafted silica bead surfaces through surface-initiated atom transfer radical polymerization (ATRP) using the CUCl/CUCl2/Me6TREN catalytic system in 2-propanol at 25 °C for 16 h. The prepared temperature-responsive surfaces were characterized by chromatographic analysis using the modified silica beads as stationary phases. Chromatographic retention times for adenosine nucleotides in aqueous mobile phases were significantly increased compared to that previously reported for other cationic hydrogel surfaces, indicating that strong electrostatic cationic copolymer brush interactions occur between the surfaces and nucleotide analytes. Retention times for adenosine nucleotides significantly decreased with increasing column temperature, explained by the decreasing basicity in the copolymer with increasing temperature. Step-temperature gradients from 10 to 50 °C shorten ATP retention times. These results indicate that cationic copolymer brush surfaces prepared by ATRP can rapidly alter their electrostatic properties by changing aqueous temperature.

AB - We have prepared poly(N-isopropylacrylamide (IPAAm)-co-2-(dimethylamino)ethylmethacrylate (DMAEMA)) brush-grafted silica bead surfaces through surface-initiated atom transfer radical polymerization (ATRP) using the CUCl/CUCl2/Me6TREN catalytic system in 2-propanol at 25 °C for 16 h. The prepared temperature-responsive surfaces were characterized by chromatographic analysis using the modified silica beads as stationary phases. Chromatographic retention times for adenosine nucleotides in aqueous mobile phases were significantly increased compared to that previously reported for other cationic hydrogel surfaces, indicating that strong electrostatic cationic copolymer brush interactions occur between the surfaces and nucleotide analytes. Retention times for adenosine nucleotides significantly decreased with increasing column temperature, explained by the decreasing basicity in the copolymer with increasing temperature. Step-temperature gradients from 10 to 50 °C shorten ATP retention times. These results indicate that cationic copolymer brush surfaces prepared by ATRP can rapidly alter their electrostatic properties by changing aqueous temperature.

UR - http://www.scopus.com/inward/record.url?scp=43149111256&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=43149111256&partnerID=8YFLogxK

U2 - 10.1021/bm701427m

DO - 10.1021/bm701427m

M3 - Article

C2 - 18355024

AN - SCOPUS:43149111256

VL - 9

SP - 1340

EP - 1347

JO - Biomacromolecules

JF - Biomacromolecules

SN - 1525-7797

IS - 4

ER -