Protein separations via thermally responsive ionic block copolymer brush layers

Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Temperature-responsive (thermoresponsive) protein adsorption on a block copolymer brush layer is demonstrated. Specifically, silica beads were modified with poly(3-acrylamidopropyl trimethylammonium chloride)-b-poly(N-isopropylacrylamide) (PAPTAC-b-PIPAAm) via multi-step atom-transfer radical polymerization. The beads were characterized with X-ray photoelectron spectroscopy, carbon/hydrogen/nitrogen elemental analysis, and gel-permeation chromatography. When they were used as chromatographic packing materials, an analysis of adenosine nucleotides indicated that the ionic properties of the copolymer brush layer could be modulated by the length of the PAPTAC segment. In addition, the elution of milk serum indicated that the proteins α-lactalbumin and β-lactoglobulin adsorbed on the copolymer brush layer at high temperature; they desorbed when the temperature was reduced. Thus, separation of milk serum proteins can be performed by simply changing the column temperature. In general, the block copolymer brush-modified beads could be used as thermally responsive chromatographic matrices for protein separations.

Original languageEnglish
Pages (from-to)26254-26263
Number of pages10
JournalRSC Advances
Volume6
Issue number31
DOIs
Publication statusPublished - 2016

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Chemistry(all)

Fingerprint Dive into the research topics of 'Protein separations via thermally responsive ionic block copolymer brush layers'. Together they form a unique fingerprint.

  • Cite this