Pulse-Engineered Controlled-V Gate and Its Applications on Superconducting Quantum Device

Takahiko Satoh, Shun Oomura, Michihiko Sugawara, Naoki Yamamoto

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, we demonstrate that, by employing the OpenPulse design kit for IBM superconducting quantum devices, the controlled-V gate (cv gate) can be implemented in about half the gate time to the controlled-X gate (cx or cnot gate) and consequently 65.5% reduced gate time compared to the cx-based implementation of cv. Then, based on the theory of Cartan decomposition, we characterize the set of all two-qubit gates implemented with only two or three cv gates; using pulse-engineered cv gates, enables us to implement these gates with shorter gate time and possibly better gate fidelity than the cx-based one, as actually demonstrated in two examples. Moreover, we showcase the improvement of linearly coupled three-qubit Toffoli gate by implementing it with the pulse-engineered cv gate, both in gate time and the averaged output-state fidelity. These results imply the importance of our cv gate implementation technique, which, as an additional option for the basis gate set design, may shorten the overall computation time and consequently improve the precision of several quantum algorithms executed on a real device.

Original languageEnglish
Article number3101610
JournalIEEE Transactions on Quantum Engineering
Volume3
DOIs
Publication statusPublished - 2022

Keywords

  • Controlled-V gate (cv gate)
  • IBM quantum device
  • OpenPulse

ASJC Scopus subject areas

  • Software
  • Computer Science (miscellaneous)
  • Condensed Matter Physics
  • Engineering (miscellaneous)
  • Mechanical Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Pulse-Engineered Controlled-V Gate and Its Applications on Superconducting Quantum Device'. Together they form a unique fingerprint.

Cite this