Putative molecular determinants mediating sensitivity or resistance towards carnosic acid tumor cell responses

Nuha Mahmoud, Mohamed E.M. Saeed, Yoshikazu Sugimoto, Anette Klinger, Edmond Fleischer, Thomas Efferth

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Background: Carnosic acid (CA) is one of the main constituents in rosemary extract. It possesses valuable pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Numerous in vitro and in vivo studies investigated the anticancer profile of CA and emphasized its potentiality for cancer treatment. Nevertheless, the role of multidrug-resistance (MDR) related mechanisms for CA's anticancer effect is not yet known. Purpose: We investigated the cytotoxicity of CA against known mechanisms of anticancer drug resistance (P-gp, ABCB5, BCRP, EGFR and p53) and determined novel putative molecular factors associated with cellular response towards CA. Study design: Cytotoxicity assays, bioinformatic analysis, flow cytometry and western blotting were performed to identify the mode of action of CA towards cancer cells. Methods: The cytotoxicity to CA was assessed using the resazurin assays in cell lines expressing the mentioned resistance mechanisms. A pharmacogenomic characterization of the NCI 60 cell line panel was applied via COMPARE, hierarchical cluster and network analyses. Flow cytometry was used to detect cellular mode of death and ROS generation. Changes in proteins-related to apoptosis were determined by Western blotting. Results: Cell lines expressing ABC transporters (P-gp, BCRP or ABCB5), mutant EGFR or p53 were not cross-resistant to CA compared to their parental counterparts. By pharmacogenomic approaches, we identified genes that belong to different functional groups (e.g. signal transduction, regulation of cytoskeleton and developmental regulatory system). These genes were predicted as molecular determinants that mediate CA tumor cellular responses. The top affected biofunctions included cellular development, cellular proliferation and cellular death and survival. The effect of CA-mediated apoptosis in leukemia cells, which were recognized as the most sensitive tumor type, was confirmed via flow cytometry and western blot analysis. Conclusion: CA may provide a novel treatment option to target refractory tumors and to effectively cooperate with established chemotherapy. Using pharmacogenomic approaches and network pharmacology, the relationship between cancer complexity and multi-target potentials of CA was analyzed and many putative molecular determinants were identified. They could serve as novel targets for CA and further studies are needed to translate the possible implications to clinical cancer treatment.

Original languageEnglish
Article number153271
JournalPhytomedicine
Volume77
DOIs
Publication statusPublished - 2020 Oct

Keywords

  • Chemotherapy
  • Fak
  • Lamiaceae
  • Multidrug resistance
  • Network pharmacology
  • Phytochemicals

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine

Fingerprint Dive into the research topics of 'Putative molecular determinants mediating sensitivity or resistance towards carnosic acid tumor cell responses'. Together they form a unique fingerprint.

Cite this