### Abstract

Ultrasonic waveforms reflected by various kinds of defects were calculated by numerical analysis based on elastic wave theory. By using these calculated results as a knowledge base, the development of a nondestructive evaluation system which provides quantitative information, such as types, locations, sizes and shapes of the defects, is expected. In this study, a fuzzy reasoning method based on principal component analysis was proposed and a prototype system was developed. This method can be used to characterize waveforms using the principal components and to interpolate the wave data using the membership functions in the fuzzy rules. In addition, by adjusting the membership functions, the error which depends on the difference between the numerical analysis and the experiment can be absorbed. This method was applied to crack depth evaluation for perpendicular and inclined cracks. In each case, both the numerical analysis data and the experimental data were evaluated with high accuracy.

Original language | English |
---|---|

Pages (from-to) | 1112-1118 |

Number of pages | 7 |

Journal | Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A |

Volume | 63 |

Issue number | 609 |

Publication status | Published - 1997 May |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Mechanical Engineering

### Cite this

*Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A*,

*63*(609), 1112-1118.

**Quantitative nondestructive evaluation from ultrasonic waveforms using principal component fuzzy rules.** / Ogi, Tetsurou; Mandai, Takashi; Yabe, Yasuhiro.

Research output: Contribution to journal › Article

*Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A*, vol. 63, no. 609, pp. 1112-1118.

}

TY - JOUR

T1 - Quantitative nondestructive evaluation from ultrasonic waveforms using principal component fuzzy rules

AU - Ogi, Tetsurou

AU - Mandai, Takashi

AU - Yabe, Yasuhiro

PY - 1997/5

Y1 - 1997/5

N2 - Ultrasonic waveforms reflected by various kinds of defects were calculated by numerical analysis based on elastic wave theory. By using these calculated results as a knowledge base, the development of a nondestructive evaluation system which provides quantitative information, such as types, locations, sizes and shapes of the defects, is expected. In this study, a fuzzy reasoning method based on principal component analysis was proposed and a prototype system was developed. This method can be used to characterize waveforms using the principal components and to interpolate the wave data using the membership functions in the fuzzy rules. In addition, by adjusting the membership functions, the error which depends on the difference between the numerical analysis and the experiment can be absorbed. This method was applied to crack depth evaluation for perpendicular and inclined cracks. In each case, both the numerical analysis data and the experimental data were evaluated with high accuracy.

AB - Ultrasonic waveforms reflected by various kinds of defects were calculated by numerical analysis based on elastic wave theory. By using these calculated results as a knowledge base, the development of a nondestructive evaluation system which provides quantitative information, such as types, locations, sizes and shapes of the defects, is expected. In this study, a fuzzy reasoning method based on principal component analysis was proposed and a prototype system was developed. This method can be used to characterize waveforms using the principal components and to interpolate the wave data using the membership functions in the fuzzy rules. In addition, by adjusting the membership functions, the error which depends on the difference between the numerical analysis and the experiment can be absorbed. This method was applied to crack depth evaluation for perpendicular and inclined cracks. In each case, both the numerical analysis data and the experimental data were evaluated with high accuracy.

UR - http://www.scopus.com/inward/record.url?scp=0031144223&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031144223&partnerID=8YFLogxK

M3 - Article

VL - 63

SP - 1112

EP - 1118

JO - Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A

JF - Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A

SN - 0387-5008

IS - 609

ER -