Quantum Functionalities Via Feedback Amplification

Rion Shimazu, Naoki Yamamoto

Research output: Contribution to journalArticlepeer-review

Abstract

Feedback amplification is a key technique for synthesizing various functionalities, especially in electronic circuits involving op amps. This paper presents a quantum version of this methodology, where the general phase-preserving quantum amplifier and coherent (i.e., measurement-free) feedback are employed to construct various types of systems having useful functionalities: quantum versions of differentiator, integrator, self-oscillator, and active filters. The class of active filters includes the Butterworth filter, which can be used to enhance the capacity of an optical quantum communication channel, and the nonreciprocal amplifier, which enables measurement of a superconducting qubits system as well as protection of it by separating input from output fields. A particularly detailed investigation is performed on the active phase-canceling filter for realizing a broadband gravitational-wave detector; that is, the feedback-amplification method is used to construct an active filter that compensates the phase delay of the signal and eventually recovers the sensitivity in the high-frequency regime.

Original languageEnglish
Article number044006
JournalPhysical Review Applied
Volume15
Issue number4
DOIs
Publication statusPublished - 2021 Apr

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Quantum Functionalities Via Feedback Amplification'. Together they form a unique fingerprint.

Cite this