Radial Fulde-Ferrell-Larkin-Ovchinnikov-like state in a population-imbalanced Fermi gas

Daisuke Inotani, Shigehiro Yasui, Takeshi Mizushima, Muneto Nitta

Research output: Contribution to journalArticlepeer-review

Abstract

The possibility of a Fulde-Ferrell-Larkin-Ovchinnikov-like (FFLO-like) state in a population-imbalanced Fermi gas with a vortex is proposed. Employing the Bogoliubov-de Gennes formalism, we determine self-consistently the superfluid order parameter and the particle number density in the presence of a vortex. We find that, upon increasing the population imbalance, the superfluid order parameter spatially oscillates around the vortex core in the radial direction, indicating that the FFLO-like state becomes stable. We find that the radial FFLO-like states cover a wide region of the phase diagram in the weak-coupling regime at T=0, in contrast with the conventional case without a vortex. We show that this inhomogeneous superfluidity can be detected as peak structures of the local polarization rate associated with the node structure of the superfluid order parameter. Since the vortex in the three-dimensional Fermi gas with population imbalance has been already realized in experiments, our proposal is a promising candidate of a FFLO-like state in cold atom physics.

Original languageEnglish
Article number053308
JournalPhysical Review A
Volume103
Issue number5
DOIs
Publication statusPublished - 2021 May

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Radial Fulde-Ferrell-Larkin-Ovchinnikov-like state in a population-imbalanced Fermi gas'. Together they form a unique fingerprint.

Cite this