TY - JOUR
T1 - Real Hardy spaces on real rank 1 semisimple Lie groups
AU - Kawazoe, Takeshi
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2005
Y1 - 2005
N2 - Let G be a real rank one connected semisimple Lie group with finite center. We introduce a real Hardy space H1(G/K) on G as the space consisting of all K-bi-invariant functions f on G whose radial maximal functions Mϕf are integrable on G. We shall obtain a relation between H1(G/K) and H1(R), the real Hardy space on the real line R, via the Abel transform on G and give a characterization of H1(G/K).
AB - Let G be a real rank one connected semisimple Lie group with finite center. We introduce a real Hardy space H1(G/K) on G as the space consisting of all K-bi-invariant functions f on G whose radial maximal functions Mϕf are integrable on G. We shall obtain a relation between H1(G/K) and H1(R), the real Hardy space on the real line R, via the Abel transform on G and give a characterization of H1(G/K).
UR - http://www.scopus.com/inward/record.url?scp=84971216007&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971216007&partnerID=8YFLogxK
U2 - 10.4099/math1924.31.281
DO - 10.4099/math1924.31.281
M3 - Article
AN - SCOPUS:84971216007
SN - 0289-2316
VL - 31
SP - 281
EP - 343
JO - Japanese Journal of Mathematics
JF - Japanese Journal of Mathematics
IS - 2
ER -