Receptor-mediated release of inositol phosphates in the cochlear and vestibular sensory epithelia of the rat

Kaoru Ogawa, Jochen Schacht

Research output: Contribution to journalArticle

37 Citations (Scopus)


Various neurotransmitters, hormones and other modulators involved in intercellular communication exert their biological action at receptors coupled to phospholipase C (PLC). This enzyme catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) to inositol 1,4,5-trisphosphate (InsP3) and 1,2-diacylglycerol (DG) which act as second messengers. In the organ of Corti of the guinea pig, the InsP3 second messenger system is linked to muscarinic cholinergic and P2y purinergic receptors. However, nothing is known about the the InsP3 second messenger system in the vestibule. In this study, the receptor-mediated release of inositol phosphates (InsPs) in the vestibular sensory epithelia was compared to that in the cochlear sensory epithelia of Fischer-344 rats. After preincubation of the isolated intact tissues with myo-[3H] in-ositol, stimulation with the cholinergic agonist carbamylcholine or the P2 purinergic agonist ATP-γ-S resulted in a concentration-dependent increase in the formation of [3H]InsPs in both epithelia. Similarly, the muscarinic cholinergic agonist muscarine enhanced InsPs release in both organs, while the nicotinic cholinergic agonist dimethylphenylpiperadinium (DMPP) was ineffective. The muscarinic cholinergic antagonist atropine completely suppressed the InsPs release induced by carbamylcholine, while the nicotinic cholinergic antagonist mecamylamine was ineffective. Potassium depolarization did not alter unstimulated or carbamylcholine-stimulated release of InsPs in either organ. In both tissues, the P2 purinergic agonist α,β-methylene ATP also increased InsPs release, but the P1 purinergic agonist adenosine did not. These results extend our previous observations in the organ of Corti of the guinea pig to the rat and suggest a similar control of the InsP3 second messenger system in the vestibular sensory epithelia. In contrast to the cochlear sensory epithelia, atropine also significantly suppressed unstimulated InsPs release in the vestibular sensory epithelia. This suggests that the physiological mechanisms of the efferent nervous systems involving InsP3 second messenger system might be different in vestibular versus cochlear sensory epithelia.

Original languageEnglish
Pages (from-to)207-214
Number of pages8
JournalHearing Research
Issue number1-2
Publication statusPublished - 1993 Sep



  • Cochlea
  • Inositol phosphates
  • Muscarinic cholinergic receptor
  • Purinergic receptor
  • Rat
  • Second messenger
  • Vestibule

ASJC Scopus subject areas

  • Sensory Systems

Cite this