Reelin transiently promotes N-cadherin-dependent neuronal adhesion during mouse cortical development

Yuki Matsunaga, Mariko Noda, Hideki Murakawa, Kanehiro Hayashi, Arata Nagasaka, Seika Inoue, Takaki Miyata, Takashi Miura, Kenichiro Kubo, Kazunori Nakajima

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Reelin is an essential glycoprotein for the establishment of the highly organized six-layered structure of neurons of the mammalian neocortex. Although the role of Reelin in the control of neuronal migration has been extensively studied at the molecular level, the mechanisms underlying Reelin-dependent neuronal layer organization are not yet fully understood. In this study, we directly showed that Reelin promotes adhesion among dissociated neocortical neurons in culture. The Reelin-mediated neuronal aggregation occurs in an N-cadherin-dependent manner, both in vivo and in vitro. Unexpectedly, however, in a rotation culture of dissociated neocortical cells that gradually reaggregated over time, we found that it was the neural progenitor cells [radial glial cells (RGCs)], rather than the neurons, that tended to form clusters in the presence of Reelin. Mathematical modeling suggested that this clustering of RGCs could be recapitulated if the Reelin-dependent promotion of neuronal adhesion were to occur only transiently. Thus, we directly measured the adhesive force between neurons and N-cadherin by atomic force microscopy, and found that Reelin indeed enhanced the adhesiveness of neurons to N-cadherin; this enhanced adhesiveness began to be observed at 30 min after Reelin stimulation, but declined by 3 h. These results suggest that Reelin transiently (and not persistently) promotes N-cadherin-mediated neuronal aggregation. When N-cadherin and stabilized β-catenin were overexpressed in the migrating neurons, the transfected neurons were abnormally distributed in the superficial region of the neocortex, suggesting that appropriate regulation of N-cadherin-mediated adhesion is important for correct positioning of the neurons during neocortical development.

Original languageEnglish
Pages (from-to)2048-2053
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume114
Issue number8
DOIs
Publication statusPublished - 2017 Feb 21

    Fingerprint

Keywords

  • Aggregation
  • Corticogenesis
  • N-cadherin
  • Neuronal migration
  • Reelin

ASJC Scopus subject areas

  • General

Cite this