Reexamining Ginzburg-Landau theory for neutron P2 3 superfluidity in neutron stars

Shigehiro Yasui, Chandrasekhar Chatterjee, Michikazu Kobayashi, Muneto Nitta

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

The Ginzburg-Landau (GL) effective theory is a useful tool to study a superconductivity or superfluidity near the critical temperature, and usually the expansion up to the fourth-order in terms of order parameters is sufficient for the description of the second-order phase transition. In this paper, we discuss the GL equation for the neutron P23 superfluidity relevant for interior of neutron stars. We derive the GL expansion up to the eighth order in the condensates and find that this order is necessary for the system to have the unique ground state, unlike the ordinary cases. Starting from the LS potential, which provides the dominant attraction between two neutrons at the high density, we derive the GL equation in the path-integral formalism, where the auxiliary field method and the Nambu-Gor'kov representation are used. We present the detailed description for the trace calculation necessary in the derivation of the GL equation. As numerical results, we show the phase diagram of the neutron P23 superfluidity on the plane spanned by the temperature and magnetic field, and we find that the eighth-order terms lead to a first-order phase transition, whose existence was predicted in the Bogoliubov-de Gennes equation but has not been found thus far within the framework of the GL expansion up to the sixth order. The first-order phase transition will affect the interior structures inside the neutron stars.

Original languageEnglish
Article number025204
JournalPhysical Review C
Volume100
Issue number2
DOIs
Publication statusPublished - 2019 Aug 5

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Reexamining Ginzburg-Landau theory for neutron P2 3 superfluidity in neutron stars'. Together they form a unique fingerprint.

Cite this