Region-Specific and State-Dependent Astrocyte Ca21 Dynamics during the Sleep-Wake Cycle in Mice

Tomomi Tsunematsu, Shuzo Sakata, Tomomi Sanagi, Kenji F. Tanaka, Ko Matsui

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca21) concentrations of mice during sleep/wakefulness states in the cortex, hippocampus, hypothalamus, cerebellum, and pons using fiber photometry. For this purpose, male transgenic mice expressing the genetically encoded ratiometric Ca21 sensor YCnano50 specifically in their astrocytes were used. We demonstrated that Ca21 levels in astrocytes substantially decrease during rapid eye movement (REM) sleep, and increase after the onset of wakefulness. In contrast, differences in Ca21 levels during non-REM (NREM) sleep were observed among the different brain regions, and no significant decrease was observed in the hypothalamus and pons. Further analyses focusing on the transition between sleep/wakefulness states and correlation analysis with the duration of REM sleep showed that Ca21 dynamics differs among brain regions, suggesting the existence of several clusters, i.e., the first comprising the cortex and hippocampus, the second comprising the hypothalamus and pons, and the third comprising the cerebellum. Our study thus demonstrated that astrocyte Ca21 levels change substantially according to sleep/wakefulness states. These changes were consistent in general unlike neural activity. However, we also clarified that Ca21 dynamics varies depending on the brain region, implying that astrocytes may play various physiological roles in sleep.

Original languageEnglish
Pages (from-to)5440-5462
Number of pages23
JournalJournal of Neuroscience
Volume41
Issue number25
DOIs
Publication statusPublished - 2021 Jun 25

Keywords

  • Astrocyte
  • Calcium
  • Sleep
  • Wakefulness

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint

Dive into the research topics of 'Region-Specific and State-Dependent Astrocyte Ca21 Dynamics during the Sleep-Wake Cycle in Mice'. Together they form a unique fingerprint.

Cite this