Relaxation of a single knotted ring polymer

Shinya Saka, Hiroshi Takano

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The relaxation of a single knotted ring polymer is studied by Brownian dynamics simulations. The relaxation rate λq for the wave number q is estimated by the least square fit of the equilibrium time-displaced correlation function Ĉq(t) = N-1ij(1/3)(Ri(t) · R j(0)) exp[i2πq(j - i)/N] to a double exponential decay at long times. Here, N is the number of segments of a ring polymer and Ri denotes the position of the ith segment relative to the center of mass of the polymer. The relaxation rate distribution of a single ring polymer with the trivial knot appears to behave as λq ≃ A(1/N)x for q = 1 and λq ≃ A′(q/N)x′ for q > 1, where x ≃ 2:10, x′ ≃ 2:17, and A < A′. These exponents are similar to that found for a linear polymer chain. The topological effect appears as the separation of the power law dependences for q = 1 and q > 1, which does not appear for a linear polymer chain. In the case of the trefoil knot, the relaxation rate distribution appears to behave as λq ≃ A(1/N)x for q = 1 and λq ≃ A′(q/N)x′ for q = 2 and 3, where x ≃ 2.61, x′ ≃ 2:02, and A > A′. The wave number q of the slowest relaxation rate λq for each N is given by q = 2 for small values of N, while it is given by q = 1 for large values of N. This crossover corresponds to the change of the structure of the ring polymer caused by the localization of the knotted part to a part of the ring polymer.

Original languageEnglish
Article number034001
JournalJournal of the Physical Society of Japan
Volume77
Issue number3
DOIs
Publication statusPublished - 2008 Mar
Externally publishedYes

Keywords

  • Brownian dynamics simulations
  • Knot
  • Relaxation modes
  • Relaxation rates
  • Ring polymer
  • Single polymer
  • Topological effects

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Relaxation of a single knotted ring polymer'. Together they form a unique fingerprint.

Cite this