Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

Mohammand Amin Taherkhani, Keivan Navi, Rodney D Van Meter

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) KQ ≈ 1.3 × 105 per node and error threshold 1.1 × 10-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

Original languageEnglish
Article number014011
JournalQuantum Science and Technology
Volume3
Issue number1
DOIs
Publication statusPublished - 2018 Jan 1

Fingerprint

repeaters
Telecommunication repeaters
resources
Networks (circuits)
bells
Demonstrations
optimization
thresholds
evaluation
estimates
products

Keywords

  • Byzantine agreement
  • distributed quantum algorithms
  • quantum repeater network (QRN)

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Physics and Astronomy (miscellaneous)
  • Electrical and Electronic Engineering
  • Materials Science (miscellaneous)

Cite this

Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks. / Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney D.

In: Quantum Science and Technology, Vol. 3, No. 1, 014011, 01.01.2018.

Research output: Contribution to journalArticle

@article{6785b06483264b42941e4c7e4b5f9053,
title = "Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks",
abstract = "Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44{\%} and the number of qubits in each node by 20{\%} for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) KQ ≈ 1.3 × 105 per node and error threshold 1.1 × 10-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.",
keywords = "Byzantine agreement, distributed quantum algorithms, quantum repeater network (QRN)",
author = "Taherkhani, {Mohammand Amin} and Keivan Navi and {Van Meter}, {Rodney D}",
year = "2018",
month = "1",
day = "1",
doi = "10.1088/2058-9565/aa9bb1",
language = "English",
volume = "3",
journal = "Quantum Science and Technology",
issn = "2058-9565",
publisher = "Institute of Physics Publishing",
number = "1",

}

TY - JOUR

T1 - Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

AU - Taherkhani, Mohammand Amin

AU - Navi, Keivan

AU - Van Meter, Rodney D

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) KQ ≈ 1.3 × 105 per node and error threshold 1.1 × 10-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

AB - Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) KQ ≈ 1.3 × 105 per node and error threshold 1.1 × 10-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

KW - Byzantine agreement

KW - distributed quantum algorithms

KW - quantum repeater network (QRN)

UR - http://www.scopus.com/inward/record.url?scp=85048004697&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048004697&partnerID=8YFLogxK

U2 - 10.1088/2058-9565/aa9bb1

DO - 10.1088/2058-9565/aa9bb1

M3 - Article

VL - 3

JO - Quantum Science and Technology

JF - Quantum Science and Technology

SN - 2058-9565

IS - 1

M1 - 014011

ER -