Rotation and orientation of axially coordinated imidazoles in low-spin ferric porphyrin complexes

Mikio Nakamura, Kunihiko Tajima, Kohji Tada, Kazuhiko Ishizu, Nobuo Nakamura

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

The variable temperature 1H NMR spectra of a series of low-spin bis(imidazole)tetrakis(2, 4, 6-trialkylphenyl)porphinatoiron(III) chlorides, (R-TPP)Fe(L)2Cl, showed that the rotation of axially coordinated 2-alkyl- and benzimidazoles slowed down on the NMR time scale at low temperature to give four pyrrole signals. The 13C NMR spectra of the 13C enriched (Me-TPP)Fe(2- methylimidazole)2Cl at the meso positions gave two meso signals with equal intensity at the temperature range below -25 °C. These results indicate that each of the axial ligands is perpendicularly aligned over a diagonal CmesoFeCmeso axis. The shift range of the pyrrole protons reached as much as 12 ppm at -56 °C. The apparent unfavorable orientation of the ligands was explained in terms of the S4 deformed structure of the porphinatoiron core in solution. The relatively small slopes in Curie plots of the pyrrole-H and the meso 13C signals were also ascribed to the deformed structure of the core. In the mixed ligand complexes having a hindered 2-isopropylimidazole and an unhindered 1-methylimidazole ligand, it was suggested from the 1H and 13C NMR splitting patterns that the rotation of only one of the ligands, 2-isopropylimidazole, was frozen. In these complexes the spread of the pyrrole signals increased to nearly 20 ppm. The activation free energies for rotation were determined by the dynamic NMR technique. They changed in the range of 11.3 to 13.6 kcal mol-1 depending upon the bulkiness of the axial ligands and o-alkyl substituents. Close examination of the dynamic process using the saturation transfer technique revealed that the dissociation of the axial ligands occurred concomitantly during the rotation process in the case of the bis(2-isopropylimidazole) complexes. In contrast, pure rotation process was observed in the complexes with 2-methyl-, 2-ethyl-, 1, 2-dimethyl- and benzimidazole. X band ESR spectra of these complexes were taken at 4.2 K in CH2Cl2 glass. Although complexes with perpendicularly aligned planar ligands tend to exhibit so called 'strong gmax' type signals, the complexes studied here showed signals with smaller gz values.

Original languageEnglish
Pages (from-to)113-124
Number of pages12
JournalInorganica Chimica Acta
Volume224
Issue number1-2
DOIs
Publication statusPublished - 1994
Externally publishedYes

Fingerprint

Imidazoles
Porphyrins
imidazoles
porphyrins
Ligands
ligands
Pyrroles
pyrroles
Nuclear magnetic resonance
nuclear magnetic resonance
Temperature
Benzimidazoles
superhigh frequencies
Free energy
Glass
Paramagnetic resonance
Protons
Chlorides
examination
plots

Keywords

  • Iron complexes
  • NMR study
  • Porphyrin complexes

ASJC Scopus subject areas

  • Biochemistry
  • Inorganic Chemistry
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Cite this

Rotation and orientation of axially coordinated imidazoles in low-spin ferric porphyrin complexes. / Nakamura, Mikio; Tajima, Kunihiko; Tada, Kohji; Ishizu, Kazuhiko; Nakamura, Nobuo.

In: Inorganica Chimica Acta, Vol. 224, No. 1-2, 1994, p. 113-124.

Research output: Contribution to journalArticle

Nakamura, Mikio ; Tajima, Kunihiko ; Tada, Kohji ; Ishizu, Kazuhiko ; Nakamura, Nobuo. / Rotation and orientation of axially coordinated imidazoles in low-spin ferric porphyrin complexes. In: Inorganica Chimica Acta. 1994 ; Vol. 224, No. 1-2. pp. 113-124.
@article{f3a7b828a1f241969a600e092adb3078,
title = "Rotation and orientation of axially coordinated imidazoles in low-spin ferric porphyrin complexes",
abstract = "The variable temperature 1H NMR spectra of a series of low-spin bis(imidazole)tetrakis(2, 4, 6-trialkylphenyl)porphinatoiron(III) chlorides, (R-TPP)Fe(L)2Cl, showed that the rotation of axially coordinated 2-alkyl- and benzimidazoles slowed down on the NMR time scale at low temperature to give four pyrrole signals. The 13C NMR spectra of the 13C enriched (Me-TPP)Fe(2- methylimidazole)2Cl at the meso positions gave two meso signals with equal intensity at the temperature range below -25 °C. These results indicate that each of the axial ligands is perpendicularly aligned over a diagonal CmesoFeCmeso axis. The shift range of the pyrrole protons reached as much as 12 ppm at -56 °C. The apparent unfavorable orientation of the ligands was explained in terms of the S4 deformed structure of the porphinatoiron core in solution. The relatively small slopes in Curie plots of the pyrrole-H and the meso 13C signals were also ascribed to the deformed structure of the core. In the mixed ligand complexes having a hindered 2-isopropylimidazole and an unhindered 1-methylimidazole ligand, it was suggested from the 1H and 13C NMR splitting patterns that the rotation of only one of the ligands, 2-isopropylimidazole, was frozen. In these complexes the spread of the pyrrole signals increased to nearly 20 ppm. The activation free energies for rotation were determined by the dynamic NMR technique. They changed in the range of 11.3 to 13.6 kcal mol-1 depending upon the bulkiness of the axial ligands and o-alkyl substituents. Close examination of the dynamic process using the saturation transfer technique revealed that the dissociation of the axial ligands occurred concomitantly during the rotation process in the case of the bis(2-isopropylimidazole) complexes. In contrast, pure rotation process was observed in the complexes with 2-methyl-, 2-ethyl-, 1, 2-dimethyl- and benzimidazole. X band ESR spectra of these complexes were taken at 4.2 K in CH2Cl2 glass. Although complexes with perpendicularly aligned planar ligands tend to exhibit so called 'strong gmax' type signals, the complexes studied here showed signals with smaller gz values.",
keywords = "Iron complexes, NMR study, Porphyrin complexes",
author = "Mikio Nakamura and Kunihiko Tajima and Kohji Tada and Kazuhiko Ishizu and Nobuo Nakamura",
year = "1994",
doi = "10.1016/0020-1693(94)04115-6",
language = "English",
volume = "224",
pages = "113--124",
journal = "Inorganica Chimica Acta",
issn = "0020-1693",
publisher = "Elsevier BV",
number = "1-2",

}

TY - JOUR

T1 - Rotation and orientation of axially coordinated imidazoles in low-spin ferric porphyrin complexes

AU - Nakamura, Mikio

AU - Tajima, Kunihiko

AU - Tada, Kohji

AU - Ishizu, Kazuhiko

AU - Nakamura, Nobuo

PY - 1994

Y1 - 1994

N2 - The variable temperature 1H NMR spectra of a series of low-spin bis(imidazole)tetrakis(2, 4, 6-trialkylphenyl)porphinatoiron(III) chlorides, (R-TPP)Fe(L)2Cl, showed that the rotation of axially coordinated 2-alkyl- and benzimidazoles slowed down on the NMR time scale at low temperature to give four pyrrole signals. The 13C NMR spectra of the 13C enriched (Me-TPP)Fe(2- methylimidazole)2Cl at the meso positions gave two meso signals with equal intensity at the temperature range below -25 °C. These results indicate that each of the axial ligands is perpendicularly aligned over a diagonal CmesoFeCmeso axis. The shift range of the pyrrole protons reached as much as 12 ppm at -56 °C. The apparent unfavorable orientation of the ligands was explained in terms of the S4 deformed structure of the porphinatoiron core in solution. The relatively small slopes in Curie plots of the pyrrole-H and the meso 13C signals were also ascribed to the deformed structure of the core. In the mixed ligand complexes having a hindered 2-isopropylimidazole and an unhindered 1-methylimidazole ligand, it was suggested from the 1H and 13C NMR splitting patterns that the rotation of only one of the ligands, 2-isopropylimidazole, was frozen. In these complexes the spread of the pyrrole signals increased to nearly 20 ppm. The activation free energies for rotation were determined by the dynamic NMR technique. They changed in the range of 11.3 to 13.6 kcal mol-1 depending upon the bulkiness of the axial ligands and o-alkyl substituents. Close examination of the dynamic process using the saturation transfer technique revealed that the dissociation of the axial ligands occurred concomitantly during the rotation process in the case of the bis(2-isopropylimidazole) complexes. In contrast, pure rotation process was observed in the complexes with 2-methyl-, 2-ethyl-, 1, 2-dimethyl- and benzimidazole. X band ESR spectra of these complexes were taken at 4.2 K in CH2Cl2 glass. Although complexes with perpendicularly aligned planar ligands tend to exhibit so called 'strong gmax' type signals, the complexes studied here showed signals with smaller gz values.

AB - The variable temperature 1H NMR spectra of a series of low-spin bis(imidazole)tetrakis(2, 4, 6-trialkylphenyl)porphinatoiron(III) chlorides, (R-TPP)Fe(L)2Cl, showed that the rotation of axially coordinated 2-alkyl- and benzimidazoles slowed down on the NMR time scale at low temperature to give four pyrrole signals. The 13C NMR spectra of the 13C enriched (Me-TPP)Fe(2- methylimidazole)2Cl at the meso positions gave two meso signals with equal intensity at the temperature range below -25 °C. These results indicate that each of the axial ligands is perpendicularly aligned over a diagonal CmesoFeCmeso axis. The shift range of the pyrrole protons reached as much as 12 ppm at -56 °C. The apparent unfavorable orientation of the ligands was explained in terms of the S4 deformed structure of the porphinatoiron core in solution. The relatively small slopes in Curie plots of the pyrrole-H and the meso 13C signals were also ascribed to the deformed structure of the core. In the mixed ligand complexes having a hindered 2-isopropylimidazole and an unhindered 1-methylimidazole ligand, it was suggested from the 1H and 13C NMR splitting patterns that the rotation of only one of the ligands, 2-isopropylimidazole, was frozen. In these complexes the spread of the pyrrole signals increased to nearly 20 ppm. The activation free energies for rotation were determined by the dynamic NMR technique. They changed in the range of 11.3 to 13.6 kcal mol-1 depending upon the bulkiness of the axial ligands and o-alkyl substituents. Close examination of the dynamic process using the saturation transfer technique revealed that the dissociation of the axial ligands occurred concomitantly during the rotation process in the case of the bis(2-isopropylimidazole) complexes. In contrast, pure rotation process was observed in the complexes with 2-methyl-, 2-ethyl-, 1, 2-dimethyl- and benzimidazole. X band ESR spectra of these complexes were taken at 4.2 K in CH2Cl2 glass. Although complexes with perpendicularly aligned planar ligands tend to exhibit so called 'strong gmax' type signals, the complexes studied here showed signals with smaller gz values.

KW - Iron complexes

KW - NMR study

KW - Porphyrin complexes

UR - http://www.scopus.com/inward/record.url?scp=0000976713&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000976713&partnerID=8YFLogxK

U2 - 10.1016/0020-1693(94)04115-6

DO - 10.1016/0020-1693(94)04115-6

M3 - Article

AN - SCOPUS:0000976713

VL - 224

SP - 113

EP - 124

JO - Inorganica Chimica Acta

JF - Inorganica Chimica Acta

SN - 0020-1693

IS - 1-2

ER -