TY - JOUR
T1 - Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent
AU - Hanaoka, Kenjiro
AU - Kikuchi, Kazuya
AU - Urano, Yasuteru
AU - Nagano, Tetsuo
PY - 2001
Y1 - 2001
N2 - Light-based microscope imaging techniques using fluorescence sensor molecules suffer from photobleaching and light scattering, but magnetic resonance imaging (MRI) can provide three-dimensional imaging without these problems. Recently, “smart” MRI contrast agents which modulate the access of water to a chelated gadolinium (Gd3+) ion in the presence or absence of a specific trigger have been reported. Zinc (Zn2+) is an essential component of many enzymes, transcription factors and synaptic vesicles in excitatory nerve terminals, so imaging of chelatable Zn2+is of interest. We have designed and synthesized the Gd3+DTPA bisamide complex 7a as a Zn2+-sensitive MRI contrast agent. Compound 7a shows a dose-dependent change in the R1relaxivity in the presence of Zn2+. We investigated this relaxation behavior, and for this purpose we also synthesized the Gd3+DTPA amide ethyl ester complex 7b. It was shown that binding between 7a and Zn2+caused a change in the relaxation time. Moreover, 7a had high selectivity for Zn2+against Ca2+and Mg2+. Compound 7a may have practical problems for in vivo usage, since the R1relaxivity is reduced with increased Zn2+concentration. However, this report demonstrates new approaches to the design and synthesis of Gd3+complexes with R1values that change with variation in Zn2+concentration.
AB - Light-based microscope imaging techniques using fluorescence sensor molecules suffer from photobleaching and light scattering, but magnetic resonance imaging (MRI) can provide three-dimensional imaging without these problems. Recently, “smart” MRI contrast agents which modulate the access of water to a chelated gadolinium (Gd3+) ion in the presence or absence of a specific trigger have been reported. Zinc (Zn2+) is an essential component of many enzymes, transcription factors and synaptic vesicles in excitatory nerve terminals, so imaging of chelatable Zn2+is of interest. We have designed and synthesized the Gd3+DTPA bisamide complex 7a as a Zn2+-sensitive MRI contrast agent. Compound 7a shows a dose-dependent change in the R1relaxivity in the presence of Zn2+. We investigated this relaxation behavior, and for this purpose we also synthesized the Gd3+DTPA amide ethyl ester complex 7b. It was shown that binding between 7a and Zn2+caused a change in the relaxation time. Moreover, 7a had high selectivity for Zn2+against Ca2+and Mg2+. Compound 7a may have practical problems for in vivo usage, since the R1relaxivity is reduced with increased Zn2+concentration. However, this report demonstrates new approaches to the design and synthesis of Gd3+complexes with R1values that change with variation in Zn2+concentration.
UR - http://www.scopus.com/inward/record.url?scp=0034741438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034741438&partnerID=8YFLogxK
U2 - 10.1039/b100994j
DO - 10.1039/b100994j
M3 - Article
AN - SCOPUS:0034741438
SN - 1470-1820
VL - 1
SP - 1840
EP - 1843
JO - Journal of the Chemical Society, Perkin Transactions 2
JF - Journal of the Chemical Society, Perkin Transactions 2
IS - 9
ER -