Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery

Mariko Chikuma, Tonghui Ma, A. S. Verkman

Research output: Contribution to journalArticle

163 Citations (Scopus)

Abstract

Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by ∼2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel 3H2O distribution method, SC water content was reduced by ∼50% in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with ∼50% reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an ∼2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also ∼2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na+, K+, Ca2+, Mg2+) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/μg protein: 5.5 ± 0.4 versus 2.3 ± 0.7 in SC; 0.037 ± 0.007 versus 0.022 ± 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.

Original languageEnglish
Pages (from-to)46616-46621
Number of pages6
JournalJournal of Biological Chemistry
Volume277
Issue number48
DOIs
Publication statusPublished - 2002 Nov 29
Externally publishedYes

Fingerprint

Aquaporin 3
Elasticity
Hydration
Glycerol
Skin
Cornea
Recovery
Epidermis
Wound Healing
Defects
Water
Aquaporins
Recovery of Function
Dermis
Tapes
Water content
Electron microscopy

ASJC Scopus subject areas

  • Biochemistry

Cite this

Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. / Chikuma, Mariko; Ma, Tonghui; Verkman, A. S.

In: Journal of Biological Chemistry, Vol. 277, No. 48, 29.11.2002, p. 46616-46621.

Research output: Contribution to journalArticle

@article{00f9fcc5faad4bdb9e5ddf44567f3a36,
title = "Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery",
abstract = "Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by ∼2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel 3H2O distribution method, SC water content was reduced by ∼50{\%} in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with ∼50{\%} reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an ∼2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also ∼2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na+, K+, Ca2+, Mg2+) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/μg protein: 5.5 ± 0.4 versus 2.3 ± 0.7 in SC; 0.037 ± 0.007 versus 0.022 ± 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.",
author = "Mariko Chikuma and Tonghui Ma and Verkman, {A. S.}",
year = "2002",
month = "11",
day = "29",
doi = "10.1074/jbc.M209003200",
language = "English",
volume = "277",
pages = "46616--46621",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "48",

}

TY - JOUR

T1 - Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery

AU - Chikuma, Mariko

AU - Ma, Tonghui

AU - Verkman, A. S.

PY - 2002/11/29

Y1 - 2002/11/29

N2 - Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by ∼2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel 3H2O distribution method, SC water content was reduced by ∼50% in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with ∼50% reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an ∼2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also ∼2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na+, K+, Ca2+, Mg2+) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/μg protein: 5.5 ± 0.4 versus 2.3 ± 0.7 in SC; 0.037 ± 0.007 versus 0.022 ± 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.

AB - Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by ∼2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel 3H2O distribution method, SC water content was reduced by ∼50% in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with ∼50% reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an ∼2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also ∼2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na+, K+, Ca2+, Mg2+) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/μg protein: 5.5 ± 0.4 versus 2.3 ± 0.7 in SC; 0.037 ± 0.007 versus 0.022 ± 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.

UR - http://www.scopus.com/inward/record.url?scp=0037195795&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037195795&partnerID=8YFLogxK

U2 - 10.1074/jbc.M209003200

DO - 10.1074/jbc.M209003200

M3 - Article

C2 - 12270942

AN - SCOPUS:0037195795

VL - 277

SP - 46616

EP - 46621

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 48

ER -