Semiclassical theory for parametric correlation of energy levels

Taro Nagao, Petr Braun, Sebastian Müller, Keiji Saitou, Stefan Heusler, Fritz Haake

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Parametric energy-level correlation describes the response of the energylevel statistics to an external parameter such as the magnetic field. Using semiclassical periodic-orbit theory for a chaotic system, we evaluate the parametric energy-level correlation depending on themagnetic field difference. The small-time expansion of the spectral form factor K(T) is shown to be in agreement with the prediction of parameter dependent random matrix theory to all orders in T.

Original languageEnglish
Pages (from-to)47-63
Number of pages17
JournalJournal of Physics A: Mathematical and Theoretical
Volume40
Issue number1
DOIs
Publication statusPublished - 2007 Jan 5
Externally publishedYes

Fingerprint

Energy Levels
Electron energy levels
energy levels
Random Matrix Theory
Chaotic systems
matrix theory
Form Factors
Chaotic System
Periodic Orbits
form factors
Orbits
Magnetic Field
Statistics
statistics
Magnetic fields
orbits
expansion
Dependent
Evaluate
Prediction

ASJC Scopus subject areas

  • Mathematical Physics
  • Physics and Astronomy(all)
  • Statistical and Nonlinear Physics
  • Modelling and Simulation
  • Statistics and Probability

Cite this

Semiclassical theory for parametric correlation of energy levels. / Nagao, Taro; Braun, Petr; Müller, Sebastian; Saitou, Keiji; Heusler, Stefan; Haake, Fritz.

In: Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 1, 05.01.2007, p. 47-63.

Research output: Contribution to journalArticle

Nagao, Taro ; Braun, Petr ; Müller, Sebastian ; Saitou, Keiji ; Heusler, Stefan ; Haake, Fritz. / Semiclassical theory for parametric correlation of energy levels. In: Journal of Physics A: Mathematical and Theoretical. 2007 ; Vol. 40, No. 1. pp. 47-63.
@article{67f7a32f688443d7b6abea4783ddabe2,
title = "Semiclassical theory for parametric correlation of energy levels",
abstract = "Parametric energy-level correlation describes the response of the energylevel statistics to an external parameter such as the magnetic field. Using semiclassical periodic-orbit theory for a chaotic system, we evaluate the parametric energy-level correlation depending on themagnetic field difference. The small-time expansion of the spectral form factor K(T) is shown to be in agreement with the prediction of parameter dependent random matrix theory to all orders in T.",
author = "Taro Nagao and Petr Braun and Sebastian M{\"u}ller and Keiji Saitou and Stefan Heusler and Fritz Haake",
year = "2007",
month = "1",
day = "5",
doi = "10.1088/1751-8113/40/1/003",
language = "English",
volume = "40",
pages = "47--63",
journal = "Journal of Physics A: Mathematical and Theoretical",
issn = "1751-8113",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - Semiclassical theory for parametric correlation of energy levels

AU - Nagao, Taro

AU - Braun, Petr

AU - Müller, Sebastian

AU - Saitou, Keiji

AU - Heusler, Stefan

AU - Haake, Fritz

PY - 2007/1/5

Y1 - 2007/1/5

N2 - Parametric energy-level correlation describes the response of the energylevel statistics to an external parameter such as the magnetic field. Using semiclassical periodic-orbit theory for a chaotic system, we evaluate the parametric energy-level correlation depending on themagnetic field difference. The small-time expansion of the spectral form factor K(T) is shown to be in agreement with the prediction of parameter dependent random matrix theory to all orders in T.

AB - Parametric energy-level correlation describes the response of the energylevel statistics to an external parameter such as the magnetic field. Using semiclassical periodic-orbit theory for a chaotic system, we evaluate the parametric energy-level correlation depending on themagnetic field difference. The small-time expansion of the spectral form factor K(T) is shown to be in agreement with the prediction of parameter dependent random matrix theory to all orders in T.

UR - http://www.scopus.com/inward/record.url?scp=77950444635&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950444635&partnerID=8YFLogxK

U2 - 10.1088/1751-8113/40/1/003

DO - 10.1088/1751-8113/40/1/003

M3 - Article

AN - SCOPUS:77950444635

VL - 40

SP - 47

EP - 63

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 1

ER -