SHOC2 is a critical modulator of sensitivity to EGFR–TKIs in non–small cell lung cancer cells

Hideki Terai, Junko Hamamoto, Katsura Emoto, Takeshi Masuda, Tadashi Manabe, Satoshi Kuronuma, Keigo Kobayashi, Keita Masuzawa, Shinnosuke Ikemura, Sohei Nakayama, Ichiro Kawada, Yusuke Suzuki, Osamu Takeuchi, Yukio Suzuki, Sumio Ohtsuki, Hiroyuki Yasuda, Kenzo Soejima, Koichi Fukunaga

Research output: Contribution to journalArticlepeer-review

Abstract

EGFR mutation-positive patients with non–small cell lung cancer (NSCLC) respond well to treatment with EGFR–tyrosine kinase inhibitors (EGFR–TKI); however, treatment with EGFR–TKIs is not curative, owing to the presence of residual cancer cells with intrinsic or acquired resistance to this class of drugs. Additional treatment targets that may enhance the efficacy of EGFR–TKIs remain elusive. Using a CRISPR/Cas9-based screen, we identified the leucine-rich repeat scaffold protein SHOC2 as a key modulator of sensitivity to EGFR–TKI treatment. On the basis of in vitro assays, we demonstrated that SHOC2 expression levels strongly correlate with the sensitivity to EGFR–TKIs and that SHOC2 affects the sensitivity to EGFR–TKIs in NSCLC cells via SHOC2/MRAS/PP1c and SHOC2/SCRIB signaling. The potential SHOC2 inhibitor celastrol phenocopied SHOC2 depletion. In addition, we confirmed that SHOC2 expression levels were important for the sensitivity to EGFR–TKIs in vivo. Furthermore, IHC showed the accumulation of cancer cells that express high levels of SHOC2 in lung cancer tissues obtained from patients with NSCLC who experienced acquired resistance to EGFR–TKIs. These data indicate that SHOC2 may be a therapeutic target for patients with NSCLC or a biomarker to predict sensitivity to EGFR–TKI therapy in EGFR mutation-positive patients with NSCLC. Our findings may help improve treatment strategies for patients with NSCLC harboring EGFR mutations. Implications: This study showed that SHOC2 works as a modulator of sensitivity to EGFR–TKIs and the expression levels of SHOC2 can be used as a biomarker for sensitivity to EGFR–TKIs.

Original languageEnglish
Pages (from-to)317-328
Number of pages12
JournalMolecular Cancer Research
Volume19
Issue number2
DOIs
Publication statusPublished - 2021 Feb 1
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'SHOC2 is a critical modulator of sensitivity to EGFR–TKIs in non–small cell lung cancer cells'. Together they form a unique fingerprint.

Cite this