Simultaneous analysis of multiple oligonucleotides by temperature-responsive chromatography using a poly(N-isopropylacrylamide)-based stationary phase

Yutaro Maekawa, Kaichi Yamazaki, Miwa Ihara, Kenichi Nagase, Hideko Kanazawa

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Oligonucleotide therapeutics have contributed remarkably to healthcare, being well suited for the treatment of intractable diseases that are difficult to approach using conventional drug modalities. However, as common techniques of oligonucleotide analysis rely on reversed-phase or ion-exchange liquid chromatography and thus employ toxic organic solvents and/or ion-pairing reagents, better alternatives are highly sought after. Poly(N-isopropylacrylamide) (PNIPAAm) is widely used in temperature-responsive chromatography (TRC), which relies on column temperature variation to control the physical properties of the stationary phase and, unlike conventional reversed-phase liquid chromatography, avoids the use of toxic organic solvents and complicated gradient methods. Herein, PNIPAAm copolymer hydrogel-modified silica beads were used for the simultaneous analysis of multiple synthetic oligonucleotides by TRC to recognize differences in the length of single nucleotides, single bases, and the number of phosphorothioated sites. Temperature-responsive elution was observed in all cases. Each separation of all combinations of multiple oligonucleotides was better at higher temperatures above the lower critical solution temperature and was performed without the use of organic solvents and gradient methods. In the case of multiply phosphorothioated oligonucleotides, good separation was achieved using an aqueous solvent and isocratic elution in the absence of ion-pairing reagents. Thus, the developed procedure was concluded to be well suited for oligonucleotide analysis. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)5341-5351
Number of pages11
JournalAnalytical and bioanalytical chemistry
Volume412
Issue number22
DOIs
Publication statusPublished - 2020 Sep 1

Keywords

  • Green chromatographic system
  • Oligonucleotide
  • Phosphorothioated oligonucleotide
  • Simultaneous analysis
  • Temperature-responsive chromatography

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry

Fingerprint Dive into the research topics of 'Simultaneous analysis of multiple oligonucleotides by temperature-responsive chromatography using a poly(N-isopropylacrylamide)-based stationary phase'. Together they form a unique fingerprint.

  • Cite this