TY - JOUR
T1 - Spatiotemporal Pavlovian head-fixed reversal learning task for mice
AU - Yamamoto, Kohei
AU - Yamada, Kota
AU - Yatagai, Saya
AU - Ujihara, Yusuke
AU - Toda, Koji
N1 - Funding Information:
This research was supported by JSPS KAKENHI 18KK0070 (KT), 19H05316 (KT), 19K03385 (KT), 19H01769 (KT), 20J21568 (KY), Keio Academic Development Fund (KT), and Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research (KT).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Our world is full of uncertainty. Animals, including humans, need to behave flexibly to adjust to ever-changing environments. Reversal learning tasks have been used to assess behavioral flexibility in many species. However, there are some limitations in the traditional free-moving methodology, including (1) sessions to train the animals, (2) within-session number of trials associated with reversals, (3) factors of physical movement unrelated to the task in the maze or operant box, and (4) incompatibility with techniques, such as two-photon imaging. Therefore, to address these limitations, we established a novel spatiotemporal Pavlovian head-fixed reversal learning task for mice. Six experimentally naive adult C57BL/6J mice were used in this study. First, we trained head-fixed mice on a fixed-time schedule task. Sucrose solution was delivered every 10 s with a single drinking spout placed within the licking distance of the mice. After the mice showed anticipatory licking toward the timing of sucrose solution delivery, we began training the mice on the fixed-time schedule reversal learning task with two licking spouts. In this task, sucrose solution was delivered through one of the two drinking spouts. The rewarding spout was switched every 10 trials. Mice quickly learned to switch anticipatory licking to the rewarding side of the spouts, suggesting that they learned this head-fixed reversal learning task. Using the head-fixed experimental design, behavioral measures can be simplified by eliminating the complex behavioral sequences observed in free-moving animals. This novel head-fixed reversal learning task is a useful assay for studying the neurobiological mechanism of behavioral flexibility that is impaired in various psychopathological conditions.
AB - Our world is full of uncertainty. Animals, including humans, need to behave flexibly to adjust to ever-changing environments. Reversal learning tasks have been used to assess behavioral flexibility in many species. However, there are some limitations in the traditional free-moving methodology, including (1) sessions to train the animals, (2) within-session number of trials associated with reversals, (3) factors of physical movement unrelated to the task in the maze or operant box, and (4) incompatibility with techniques, such as two-photon imaging. Therefore, to address these limitations, we established a novel spatiotemporal Pavlovian head-fixed reversal learning task for mice. Six experimentally naive adult C57BL/6J mice were used in this study. First, we trained head-fixed mice on a fixed-time schedule task. Sucrose solution was delivered every 10 s with a single drinking spout placed within the licking distance of the mice. After the mice showed anticipatory licking toward the timing of sucrose solution delivery, we began training the mice on the fixed-time schedule reversal learning task with two licking spouts. In this task, sucrose solution was delivered through one of the two drinking spouts. The rewarding spout was switched every 10 trials. Mice quickly learned to switch anticipatory licking to the rewarding side of the spouts, suggesting that they learned this head-fixed reversal learning task. Using the head-fixed experimental design, behavioral measures can be simplified by eliminating the complex behavioral sequences observed in free-moving animals. This novel head-fixed reversal learning task is a useful assay for studying the neurobiological mechanism of behavioral flexibility that is impaired in various psychopathological conditions.
KW - Behavioral flexibility
KW - Head-fixed
KW - Mice
KW - Pavlovian conditioning
KW - Reversal learning
UR - http://www.scopus.com/inward/record.url?scp=85137598686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137598686&partnerID=8YFLogxK
U2 - 10.1186/s13041-022-00952-5
DO - 10.1186/s13041-022-00952-5
M3 - Article
C2 - 36071471
AN - SCOPUS:85137598686
SN - 1756-6606
VL - 15
JO - Molecular Brain
JF - Molecular Brain
IS - 1
M1 - 78
ER -