TY - JOUR
T1 - Specific heat and effects of uniaxial anisotropy of a p-wave pairing interaction in a strongly interacting ultracold fermi gas
AU - Inotani, Daisuke
AU - van Wyk, Pieter
AU - Ohashi, Yoji
N1 - Publisher Copyright:
Copyright © 2017, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - We investigate the specific heat CV at constant volume and effects of uniaxial anisotropy of a p-wave attractive interaction in the normal state of an ultracold Fermi gas. Within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we evaluate this thermodynamic quantity as a function of temperature, in the whole interaction regime. While the uniaxial anisotropy is not crucial for CV in the weak-coupling regime, CV is found to be sensitive to the uniaxial anisotropy in the strong-coupling regime. This originates from the population imbalance among pi-wave molecules (i = x, y, z), indicating that the specific heat is a useful observable to see which kinds of p-wave molecules dominantly exist in the strong-coupling regime when the p-wave interaction has uniaxial anisotropy. Using this strong point, we classify the strong-coupling regime into some characteristic regions. Since a p-wave pairing interaction with uniaxial anisotropy has been discovered in a 40K Fermi gas, our results would be useful in considering strong-coupling properties of a p-wave interacting Fermi gas, when the interaction is uniaxially anisotropic.
AB - We investigate the specific heat CV at constant volume and effects of uniaxial anisotropy of a p-wave attractive interaction in the normal state of an ultracold Fermi gas. Within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we evaluate this thermodynamic quantity as a function of temperature, in the whole interaction regime. While the uniaxial anisotropy is not crucial for CV in the weak-coupling regime, CV is found to be sensitive to the uniaxial anisotropy in the strong-coupling regime. This originates from the population imbalance among pi-wave molecules (i = x, y, z), indicating that the specific heat is a useful observable to see which kinds of p-wave molecules dominantly exist in the strong-coupling regime when the p-wave interaction has uniaxial anisotropy. Using this strong point, we classify the strong-coupling regime into some characteristic regions. Since a p-wave pairing interaction with uniaxial anisotropy has been discovered in a 40K Fermi gas, our results would be useful in considering strong-coupling properties of a p-wave interacting Fermi gas, when the interaction is uniaxially anisotropic.
UR - http://www.scopus.com/inward/record.url?scp=85093307451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85093307451&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85093307451
JO - Mathematical Social Sciences
JF - Mathematical Social Sciences
SN - 0165-4896
ER -