Specification testing for errors-in-variables models

Taisuke Otsu, Luke Taylor

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This paper considers specification testing for regression models with errors-in-variables and proposes a test statistic comparing the distance between the parametric and nonparametric fits based on deconvolution techniques. In contrast to the methods proposed by Hall and Ma (2007, Annals of Statistics, 35, 2620-2638) and Song (2008, Journal of Multivariate Analysis, 99, 2406-2443), our test allows general nonlinear regression models and possesses complementary local power properties. We establish the asymptotic properties of our test statistic for the ordinary and supersmooth measurement error densities. Simulation results endorse our theoretical findings: our test has advantages in detecting high-frequency alternatives and dominates the existing tests under certain specifications.

Original languageEnglish
JournalEconometric Theory
DOIs
Publication statusAccepted/In press - 2020

ASJC Scopus subject areas

  • Social Sciences (miscellaneous)
  • Economics and Econometrics

Fingerprint Dive into the research topics of 'Specification testing for errors-in-variables models'. Together they form a unique fingerprint.

  • Cite this