Spin distribution in low-spin (meso-tetraalkylporphyrinato)iron(III) complexes with (d(xz),d(yz))4(d(xy))1 configuration. Studies by 1H NMR, 13C NMR, and EPR spectroscopies

Takahisa Ikeue, Yoshiki Ohgo, Takashi Saitoh, Mikio Nakamura, Hiroshi Fujii, Masataka Yokoyama

Research output: Contribution to journalArticle

74 Citations (Scopus)

Abstract

H NMR, 13C NMR, and EPR studies of a series of low-spin (meso- tetraalkylporphyrinato)iron(III) complexes, [Fe(TRP)(L)2]X where R = (n)Pr, (c)Pr, and (i)Pr and L represents axial ligands such as imidazoles, pyridines, and cyanide, have revealed that the ground-state electron configuration of [Fe(T(n)PrP)(L)2]X and [Fe(T(c)PrP)(L)2]X is presented either as the common (d(xy))2(d(xz),d(yz))3 or as the less common (d(xz),d(yz))4(d(xy))1 depending on the axial ligands. The ground-state electron configuration of the isopropyl complexes [Fe(T(i)PrP)(L) 2]X is, however, presented as (d(xz),d(yz))4(d(xy))1 regardless of the kind of axial ligands. In every case, the contribution of the (d(xz),d(yz))4(d(xy))1 state to the electronic ground state increases in the following order: HIm < 4-Me2NPy < 2-MeIm < CN- < 3-MePy < Py < 4-CNPy. Combined analysis of the 13C and 1H NMR isotropic shifts together with the EPR g values have yielded the spin densities at the porphyrin carbon and nitrogen atoms. Estimated spin densities in [Fe(T(i)PrP)(4-CNPy)2]+, which has the purest (d(xz),d(yz))4(d(xy))1 ground state among the complexes examined in this study, are as follows: meso-carbon, +0.045; α-pyrrole carbon, +0.0088; β-pyrrole carbon, -0.00026; and pyrrole nitrogen, +0.057. Thus, the relatively large spin densities are on the pyrrole nitrogen and meso-carbon atoms. The result is in sharp contrast to the spin distribution in the (d(xy))2(d(xz),d(yz))3 type complexes; the largest spin density is at the β-pyrrole carbon atoms in bis(1-methylimidazole)(meso- tetraphenylporphyrinato)iron(III), [Fe(TPP)(1-MeIm)2]+, as determined by Goff. The large downfield shift of the meso-carbon signal, δ +917.5 ppm at - 50 °C in [Fe(T(i)PrP)(4-CNPy)2]+, is ascribed to the large spin densities at these carbon atoms. In contrast, the large upfield shift of the α-pyrrole carbon signal, δ -293.5 ppm at the same temperature, is caused by the spin polarization from the adjacent meso-carbon and pyrrole nitrogen atoms.

Original languageEnglish
Pages (from-to)4068-4076
Number of pages9
JournalJournal of the American Chemical Society
Volume122
Issue number17
DOIs
Publication statusPublished - 2000 May 3

Fingerprint

Paramagnetic resonance
Pyrroles
Magnetic Resonance Spectroscopy
Carbon
Iron
Nuclear magnetic resonance
Spectroscopy
Ground state
Nitrogen
Atoms
Ligands
Proton Magnetic Resonance Spectroscopy
Carbon-13 Magnetic Resonance Spectroscopy
Electrons
Imidazoles
Pyridines
Spin polarization
Porphyrins
Cyanides
Pyridine

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Spin distribution in low-spin (meso-tetraalkylporphyrinato)iron(III) complexes with (d(xz),d(yz))4(d(xy))1 configuration. Studies by 1H NMR, 13C NMR, and EPR spectroscopies. / Ikeue, Takahisa; Ohgo, Yoshiki; Saitoh, Takashi; Nakamura, Mikio; Fujii, Hiroshi; Yokoyama, Masataka.

In: Journal of the American Chemical Society, Vol. 122, No. 17, 03.05.2000, p. 4068-4076.

Research output: Contribution to journalArticle

Ikeue, Takahisa ; Ohgo, Yoshiki ; Saitoh, Takashi ; Nakamura, Mikio ; Fujii, Hiroshi ; Yokoyama, Masataka. / Spin distribution in low-spin (meso-tetraalkylporphyrinato)iron(III) complexes with (d(xz),d(yz))4(d(xy))1 configuration. Studies by 1H NMR, 13C NMR, and EPR spectroscopies. In: Journal of the American Chemical Society. 2000 ; Vol. 122, No. 17. pp. 4068-4076.
@article{d426a35666584fdd8ae02e050706c39c,
title = "Spin distribution in low-spin (meso-tetraalkylporphyrinato)iron(III) complexes with (d(xz),d(yz))4(d(xy))1 configuration. Studies by 1H NMR, 13C NMR, and EPR spectroscopies",
abstract = "H NMR, 13C NMR, and EPR studies of a series of low-spin (meso- tetraalkylporphyrinato)iron(III) complexes, [Fe(TRP)(L)2]X where R = (n)Pr, (c)Pr, and (i)Pr and L represents axial ligands such as imidazoles, pyridines, and cyanide, have revealed that the ground-state electron configuration of [Fe(T(n)PrP)(L)2]X and [Fe(T(c)PrP)(L)2]X is presented either as the common (d(xy))2(d(xz),d(yz))3 or as the less common (d(xz),d(yz))4(d(xy))1 depending on the axial ligands. The ground-state electron configuration of the isopropyl complexes [Fe(T(i)PrP)(L) 2]X is, however, presented as (d(xz),d(yz))4(d(xy))1 regardless of the kind of axial ligands. In every case, the contribution of the (d(xz),d(yz))4(d(xy))1 state to the electronic ground state increases in the following order: HIm < 4-Me2NPy < 2-MeIm < CN- < 3-MePy < Py < 4-CNPy. Combined analysis of the 13C and 1H NMR isotropic shifts together with the EPR g values have yielded the spin densities at the porphyrin carbon and nitrogen atoms. Estimated spin densities in [Fe(T(i)PrP)(4-CNPy)2]+, which has the purest (d(xz),d(yz))4(d(xy))1 ground state among the complexes examined in this study, are as follows: meso-carbon, +0.045; α-pyrrole carbon, +0.0088; β-pyrrole carbon, -0.00026; and pyrrole nitrogen, +0.057. Thus, the relatively large spin densities are on the pyrrole nitrogen and meso-carbon atoms. The result is in sharp contrast to the spin distribution in the (d(xy))2(d(xz),d(yz))3 type complexes; the largest spin density is at the β-pyrrole carbon atoms in bis(1-methylimidazole)(meso- tetraphenylporphyrinato)iron(III), [Fe(TPP)(1-MeIm)2]+, as determined by Goff. The large downfield shift of the meso-carbon signal, δ +917.5 ppm at - 50 °C in [Fe(T(i)PrP)(4-CNPy)2]+, is ascribed to the large spin densities at these carbon atoms. In contrast, the large upfield shift of the α-pyrrole carbon signal, δ -293.5 ppm at the same temperature, is caused by the spin polarization from the adjacent meso-carbon and pyrrole nitrogen atoms.",
author = "Takahisa Ikeue and Yoshiki Ohgo and Takashi Saitoh and Mikio Nakamura and Hiroshi Fujii and Masataka Yokoyama",
year = "2000",
month = "5",
day = "3",
doi = "10.1021/ja992219n",
language = "English",
volume = "122",
pages = "4068--4076",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "17",

}

TY - JOUR

T1 - Spin distribution in low-spin (meso-tetraalkylporphyrinato)iron(III) complexes with (d(xz),d(yz))4(d(xy))1 configuration. Studies by 1H NMR, 13C NMR, and EPR spectroscopies

AU - Ikeue, Takahisa

AU - Ohgo, Yoshiki

AU - Saitoh, Takashi

AU - Nakamura, Mikio

AU - Fujii, Hiroshi

AU - Yokoyama, Masataka

PY - 2000/5/3

Y1 - 2000/5/3

N2 - H NMR, 13C NMR, and EPR studies of a series of low-spin (meso- tetraalkylporphyrinato)iron(III) complexes, [Fe(TRP)(L)2]X where R = (n)Pr, (c)Pr, and (i)Pr and L represents axial ligands such as imidazoles, pyridines, and cyanide, have revealed that the ground-state electron configuration of [Fe(T(n)PrP)(L)2]X and [Fe(T(c)PrP)(L)2]X is presented either as the common (d(xy))2(d(xz),d(yz))3 or as the less common (d(xz),d(yz))4(d(xy))1 depending on the axial ligands. The ground-state electron configuration of the isopropyl complexes [Fe(T(i)PrP)(L) 2]X is, however, presented as (d(xz),d(yz))4(d(xy))1 regardless of the kind of axial ligands. In every case, the contribution of the (d(xz),d(yz))4(d(xy))1 state to the electronic ground state increases in the following order: HIm < 4-Me2NPy < 2-MeIm < CN- < 3-MePy < Py < 4-CNPy. Combined analysis of the 13C and 1H NMR isotropic shifts together with the EPR g values have yielded the spin densities at the porphyrin carbon and nitrogen atoms. Estimated spin densities in [Fe(T(i)PrP)(4-CNPy)2]+, which has the purest (d(xz),d(yz))4(d(xy))1 ground state among the complexes examined in this study, are as follows: meso-carbon, +0.045; α-pyrrole carbon, +0.0088; β-pyrrole carbon, -0.00026; and pyrrole nitrogen, +0.057. Thus, the relatively large spin densities are on the pyrrole nitrogen and meso-carbon atoms. The result is in sharp contrast to the spin distribution in the (d(xy))2(d(xz),d(yz))3 type complexes; the largest spin density is at the β-pyrrole carbon atoms in bis(1-methylimidazole)(meso- tetraphenylporphyrinato)iron(III), [Fe(TPP)(1-MeIm)2]+, as determined by Goff. The large downfield shift of the meso-carbon signal, δ +917.5 ppm at - 50 °C in [Fe(T(i)PrP)(4-CNPy)2]+, is ascribed to the large spin densities at these carbon atoms. In contrast, the large upfield shift of the α-pyrrole carbon signal, δ -293.5 ppm at the same temperature, is caused by the spin polarization from the adjacent meso-carbon and pyrrole nitrogen atoms.

AB - H NMR, 13C NMR, and EPR studies of a series of low-spin (meso- tetraalkylporphyrinato)iron(III) complexes, [Fe(TRP)(L)2]X where R = (n)Pr, (c)Pr, and (i)Pr and L represents axial ligands such as imidazoles, pyridines, and cyanide, have revealed that the ground-state electron configuration of [Fe(T(n)PrP)(L)2]X and [Fe(T(c)PrP)(L)2]X is presented either as the common (d(xy))2(d(xz),d(yz))3 or as the less common (d(xz),d(yz))4(d(xy))1 depending on the axial ligands. The ground-state electron configuration of the isopropyl complexes [Fe(T(i)PrP)(L) 2]X is, however, presented as (d(xz),d(yz))4(d(xy))1 regardless of the kind of axial ligands. In every case, the contribution of the (d(xz),d(yz))4(d(xy))1 state to the electronic ground state increases in the following order: HIm < 4-Me2NPy < 2-MeIm < CN- < 3-MePy < Py < 4-CNPy. Combined analysis of the 13C and 1H NMR isotropic shifts together with the EPR g values have yielded the spin densities at the porphyrin carbon and nitrogen atoms. Estimated spin densities in [Fe(T(i)PrP)(4-CNPy)2]+, which has the purest (d(xz),d(yz))4(d(xy))1 ground state among the complexes examined in this study, are as follows: meso-carbon, +0.045; α-pyrrole carbon, +0.0088; β-pyrrole carbon, -0.00026; and pyrrole nitrogen, +0.057. Thus, the relatively large spin densities are on the pyrrole nitrogen and meso-carbon atoms. The result is in sharp contrast to the spin distribution in the (d(xy))2(d(xz),d(yz))3 type complexes; the largest spin density is at the β-pyrrole carbon atoms in bis(1-methylimidazole)(meso- tetraphenylporphyrinato)iron(III), [Fe(TPP)(1-MeIm)2]+, as determined by Goff. The large downfield shift of the meso-carbon signal, δ +917.5 ppm at - 50 °C in [Fe(T(i)PrP)(4-CNPy)2]+, is ascribed to the large spin densities at these carbon atoms. In contrast, the large upfield shift of the α-pyrrole carbon signal, δ -293.5 ppm at the same temperature, is caused by the spin polarization from the adjacent meso-carbon and pyrrole nitrogen atoms.

UR - http://www.scopus.com/inward/record.url?scp=0034600326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034600326&partnerID=8YFLogxK

U2 - 10.1021/ja992219n

DO - 10.1021/ja992219n

M3 - Article

AN - SCOPUS:0034600326

VL - 122

SP - 4068

EP - 4076

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 17

ER -