Spin freezing process in a reentrant ferromagnet studied by neutron depolarization analysis

Tetsuya Sato, T. Shinohara, T. Ogawa, M. Takeda

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The spin freezing process and the magnetic nature of reentrant spin-glass (RSG) and the ferromagnetic (FM) phases of a typical reentrant ferromagnet Ni78Mn22 were investigated based on neutron depolarization analysis, and the results were compared with the previous Mössbauer measurements [Phys. Rev. B 64, 184432 (2001)]. The wavelength-dependent polarization, under a field cooled (FC) condition, showed the damped oscillatory behavior in both the RSG and FM phases, except in the temperature region just above the RSG temperature TRSG ∼ 60 K. At a temperature of around 80 K, however, it showed a double oscillatory behavior. The field integral I, which is proportional to the mean local magnetic induction, was deduced as a function of the temperature. Two branches of temperature-dependent field integrals were found: a low-temperature Ilow-branch, which has a small value of I, stopped at a temperature below the Curie temperature T C ∼ 160 K, and a high temperature Ihigh-branch, which has a large value of I, appeared just below 80 K. This means that there are two kinds of magnetic environments, and they have different values of magnetization. This is consistent with the observation of the double peak spectrum of the hyperfine field in the previous Mössbauer measurements. The present neutron data and the Mössbauer data can be interpreted along a scenario of reentrant behavior, which consists of the low-temperature spin canting state and the "melting of frustrated spins" mechanism introduced by Saslow and Parker [Phys. Rev. Lett. 56, 1074 (1986)], except for the absence of the observation of singularity in the temperature-dependent magnetization. Based on such considerations, we constructed a comprehensive picture of the spin freezing process and the magnetic nature of the RSG and FM phases in the reentrant ferromagnet.

Original languageEnglish
Article number134410
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume70
Issue number13
DOIs
Publication statusPublished - 2004 Oct

Fingerprint

Depolarization
Freezing
depolarization
freezing
Neutrons
neutrons
spin glass
Spin glass
Temperature
temperature
magnetization
Magnetization
magnetic induction
Curie temperature
Electromagnetic induction
melting
Melting
polarization
Polarization
wavelengths

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Spin freezing process in a reentrant ferromagnet studied by neutron depolarization analysis. / Sato, Tetsuya; Shinohara, T.; Ogawa, T.; Takeda, M.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 70, No. 13, 134410, 10.2004.

Research output: Contribution to journalArticle

@article{b72fdd5a2c6147dfa2f3aa64e4964f95,
title = "Spin freezing process in a reentrant ferromagnet studied by neutron depolarization analysis",
abstract = "The spin freezing process and the magnetic nature of reentrant spin-glass (RSG) and the ferromagnetic (FM) phases of a typical reentrant ferromagnet Ni78Mn22 were investigated based on neutron depolarization analysis, and the results were compared with the previous M{\"o}ssbauer measurements [Phys. Rev. B 64, 184432 (2001)]. The wavelength-dependent polarization, under a field cooled (FC) condition, showed the damped oscillatory behavior in both the RSG and FM phases, except in the temperature region just above the RSG temperature TRSG ∼ 60 K. At a temperature of around 80 K, however, it showed a double oscillatory behavior. The field integral I, which is proportional to the mean local magnetic induction, was deduced as a function of the temperature. Two branches of temperature-dependent field integrals were found: a low-temperature Ilow-branch, which has a small value of I, stopped at a temperature below the Curie temperature T C ∼ 160 K, and a high temperature Ihigh-branch, which has a large value of I, appeared just below 80 K. This means that there are two kinds of magnetic environments, and they have different values of magnetization. This is consistent with the observation of the double peak spectrum of the hyperfine field in the previous M{\"o}ssbauer measurements. The present neutron data and the M{\"o}ssbauer data can be interpreted along a scenario of reentrant behavior, which consists of the low-temperature spin canting state and the {"}melting of frustrated spins{"} mechanism introduced by Saslow and Parker [Phys. Rev. Lett. 56, 1074 (1986)], except for the absence of the observation of singularity in the temperature-dependent magnetization. Based on such considerations, we constructed a comprehensive picture of the spin freezing process and the magnetic nature of the RSG and FM phases in the reentrant ferromagnet.",
author = "Tetsuya Sato and T. Shinohara and T. Ogawa and M. Takeda",
year = "2004",
month = "10",
doi = "10.1103/PhysRevB.70.134410",
language = "English",
volume = "70",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "13",

}

TY - JOUR

T1 - Spin freezing process in a reentrant ferromagnet studied by neutron depolarization analysis

AU - Sato, Tetsuya

AU - Shinohara, T.

AU - Ogawa, T.

AU - Takeda, M.

PY - 2004/10

Y1 - 2004/10

N2 - The spin freezing process and the magnetic nature of reentrant spin-glass (RSG) and the ferromagnetic (FM) phases of a typical reentrant ferromagnet Ni78Mn22 were investigated based on neutron depolarization analysis, and the results were compared with the previous Mössbauer measurements [Phys. Rev. B 64, 184432 (2001)]. The wavelength-dependent polarization, under a field cooled (FC) condition, showed the damped oscillatory behavior in both the RSG and FM phases, except in the temperature region just above the RSG temperature TRSG ∼ 60 K. At a temperature of around 80 K, however, it showed a double oscillatory behavior. The field integral I, which is proportional to the mean local magnetic induction, was deduced as a function of the temperature. Two branches of temperature-dependent field integrals were found: a low-temperature Ilow-branch, which has a small value of I, stopped at a temperature below the Curie temperature T C ∼ 160 K, and a high temperature Ihigh-branch, which has a large value of I, appeared just below 80 K. This means that there are two kinds of magnetic environments, and they have different values of magnetization. This is consistent with the observation of the double peak spectrum of the hyperfine field in the previous Mössbauer measurements. The present neutron data and the Mössbauer data can be interpreted along a scenario of reentrant behavior, which consists of the low-temperature spin canting state and the "melting of frustrated spins" mechanism introduced by Saslow and Parker [Phys. Rev. Lett. 56, 1074 (1986)], except for the absence of the observation of singularity in the temperature-dependent magnetization. Based on such considerations, we constructed a comprehensive picture of the spin freezing process and the magnetic nature of the RSG and FM phases in the reentrant ferromagnet.

AB - The spin freezing process and the magnetic nature of reentrant spin-glass (RSG) and the ferromagnetic (FM) phases of a typical reentrant ferromagnet Ni78Mn22 were investigated based on neutron depolarization analysis, and the results were compared with the previous Mössbauer measurements [Phys. Rev. B 64, 184432 (2001)]. The wavelength-dependent polarization, under a field cooled (FC) condition, showed the damped oscillatory behavior in both the RSG and FM phases, except in the temperature region just above the RSG temperature TRSG ∼ 60 K. At a temperature of around 80 K, however, it showed a double oscillatory behavior. The field integral I, which is proportional to the mean local magnetic induction, was deduced as a function of the temperature. Two branches of temperature-dependent field integrals were found: a low-temperature Ilow-branch, which has a small value of I, stopped at a temperature below the Curie temperature T C ∼ 160 K, and a high temperature Ihigh-branch, which has a large value of I, appeared just below 80 K. This means that there are two kinds of magnetic environments, and they have different values of magnetization. This is consistent with the observation of the double peak spectrum of the hyperfine field in the previous Mössbauer measurements. The present neutron data and the Mössbauer data can be interpreted along a scenario of reentrant behavior, which consists of the low-temperature spin canting state and the "melting of frustrated spins" mechanism introduced by Saslow and Parker [Phys. Rev. Lett. 56, 1074 (1986)], except for the absence of the observation of singularity in the temperature-dependent magnetization. Based on such considerations, we constructed a comprehensive picture of the spin freezing process and the magnetic nature of the RSG and FM phases in the reentrant ferromagnet.

UR - http://www.scopus.com/inward/record.url?scp=42749099857&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=42749099857&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.70.134410

DO - 10.1103/PhysRevB.70.134410

M3 - Article

VL - 70

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 13

M1 - 134410

ER -