TY - JOUR
T1 - Spin susceptibility and fluctuation corrections in the BCS-BEC crossover regime of an ultracold Fermi gas
AU - Kashimura, Takashi
AU - Watanabe, Ryota
AU - Ohashi, Yoji
PY - 2012/10/22
Y1 - 2012/10/22
N2 - We investigate magnetic properties and effects of pairing fluctuations in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover regime of an ultracold Fermi gas. Recently, Liu and Hu, and Parish, pointed out that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR), which has been extensively used to successfully clarify various physical properties of cold Fermi gases, unphysically gives negative spin susceptibility in the BCS-BEC crossover region. The same problem also exists in the ordinary non-self-consistent T-matrix approximation. In this paper, we clarify that this serious problem comes from incomplete treatment in term of pseudogap phenomena originating from strong pairing fluctuations, as well as effects of spin fluctuations on the spin susceptibility. Including these two key issues, we construct an extended T-matrix theory which can overcome this problem. The resulting positive spin susceptibility agrees well with the recent experiment on a 6Li Fermi gas done by Sanner. We also apply our theory to a polarized Fermi gas to examine the superfluid phase transition temperature T c, as a function of the polarization rate. Since the spin susceptibility is an important physical quantity, especially in singlet Fermi superfluids, our results would be useful in considering how singlet pairs appear above and below T c in the BCS-BEC crossover regime of cold Fermi gases.
AB - We investigate magnetic properties and effects of pairing fluctuations in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover regime of an ultracold Fermi gas. Recently, Liu and Hu, and Parish, pointed out that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR), which has been extensively used to successfully clarify various physical properties of cold Fermi gases, unphysically gives negative spin susceptibility in the BCS-BEC crossover region. The same problem also exists in the ordinary non-self-consistent T-matrix approximation. In this paper, we clarify that this serious problem comes from incomplete treatment in term of pseudogap phenomena originating from strong pairing fluctuations, as well as effects of spin fluctuations on the spin susceptibility. Including these two key issues, we construct an extended T-matrix theory which can overcome this problem. The resulting positive spin susceptibility agrees well with the recent experiment on a 6Li Fermi gas done by Sanner. We also apply our theory to a polarized Fermi gas to examine the superfluid phase transition temperature T c, as a function of the polarization rate. Since the spin susceptibility is an important physical quantity, especially in singlet Fermi superfluids, our results would be useful in considering how singlet pairs appear above and below T c in the BCS-BEC crossover regime of cold Fermi gases.
UR - http://www.scopus.com/inward/record.url?scp=84868023658&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868023658&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.86.043622
DO - 10.1103/PhysRevA.86.043622
M3 - Article
AN - SCOPUS:84868023658
SN - 2469-9926
VL - 86
JO - Physical Review A
JF - Physical Review A
IS - 4
M1 - 043622
ER -