STAT1 upregulates glutaminase and modulates amino acids and glutathione metabolism

Shingo Kondo, Yu Kato, Satoshi Minagawa, Yoshikazu Sugimoto

Research output: Contribution to journalArticle

Abstract

We previously reported the upregulation of cellular Glu and glutathione levels in human ABCB5- and murine Abcb5-transfected cells. Here, we demonstrate the upregulation of STAT1 and glutaminase (GLS) in ABCB5/Abcb5-transfected cells. Among a total of four ABCB5/Abcb5 high-expressing clones with docetaxel resistance, three of the clones expressed STAT1 and GLS highly and showed resistance to docetaxel and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. Neither STAT1 nor GLS upregulation was observed in the remaining ABCB5 high-expressing clone, as well as in another two ABCB5 low-expressing clones; these three clones did not show BSO resistance. The ABCB5/STAT1 high-expressing clones showed higher cellular levels of Ala, Glu, and Asp and lower cellular levels of Phe, Trp, Leu, Ile, Gly, Met, Tyr, Val, and His compared to the ABCB5/STAT1 low-expressing clones. The former clones also showed a higher resistance to Glu. The STAT1-transfected clones expressed high levels of GLS and the corresponding mRNA, suggesting the transactivation of GLS by STAT1. These clones showed resistance to Glu and BSO, similar to the ABCB5/STAT1 high-expressing clones. The cellular glutathione levels of the STAT1-transfected clones were significantly higher than that of the control. The STAT1-transfected clones also showed greater resistance to the effect of BSO on the cellular glutathione depletion compared to the control. These results demonstrate that STAT1 upregulates GLS and modulates amino acids and glutathione metabolism. Although we were unable to directly prove STAT1 upregulation by ABCB5, our results suggest that ABCB5 expression, directly or indirectly, leads to the overexpression of STAT1.

Original languageEnglish
JournalBiochemical and Biophysical Research Communications
DOIs
Publication statusAccepted/In press - 2020 Jan 1

Fingerprint

Glutaminase
Metabolism
Buthionine Sulfoximine
Glutathione
Up-Regulation
Clone Cells
docetaxel
Amino Acids
Messenger RNA
Viperidae
Transcriptional Activation

Keywords

  • ABC transporter
  • Buthionine sulfoximine
  • Gamma-glutamylcysteine ligase
  • Glutaminase
  • Glutathione
  • STAT1

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

STAT1 upregulates glutaminase and modulates amino acids and glutathione metabolism. / Kondo, Shingo; Kato, Yu; Minagawa, Satoshi; Sugimoto, Yoshikazu.

In: Biochemical and Biophysical Research Communications, 01.01.2020.

Research output: Contribution to journalArticle

@article{405a7ce4a679453c83bd6b089f11b4c4,
title = "STAT1 upregulates glutaminase and modulates amino acids and glutathione metabolism",
abstract = "We previously reported the upregulation of cellular Glu and glutathione levels in human ABCB5- and murine Abcb5-transfected cells. Here, we demonstrate the upregulation of STAT1 and glutaminase (GLS) in ABCB5/Abcb5-transfected cells. Among a total of four ABCB5/Abcb5 high-expressing clones with docetaxel resistance, three of the clones expressed STAT1 and GLS highly and showed resistance to docetaxel and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. Neither STAT1 nor GLS upregulation was observed in the remaining ABCB5 high-expressing clone, as well as in another two ABCB5 low-expressing clones; these three clones did not show BSO resistance. The ABCB5/STAT1 high-expressing clones showed higher cellular levels of Ala, Glu, and Asp and lower cellular levels of Phe, Trp, Leu, Ile, Gly, Met, Tyr, Val, and His compared to the ABCB5/STAT1 low-expressing clones. The former clones also showed a higher resistance to Glu. The STAT1-transfected clones expressed high levels of GLS and the corresponding mRNA, suggesting the transactivation of GLS by STAT1. These clones showed resistance to Glu and BSO, similar to the ABCB5/STAT1 high-expressing clones. The cellular glutathione levels of the STAT1-transfected clones were significantly higher than that of the control. The STAT1-transfected clones also showed greater resistance to the effect of BSO on the cellular glutathione depletion compared to the control. These results demonstrate that STAT1 upregulates GLS and modulates amino acids and glutathione metabolism. Although we were unable to directly prove STAT1 upregulation by ABCB5, our results suggest that ABCB5 expression, directly or indirectly, leads to the overexpression of STAT1.",
keywords = "ABC transporter, Buthionine sulfoximine, Gamma-glutamylcysteine ligase, Glutaminase, Glutathione, STAT1",
author = "Shingo Kondo and Yu Kato and Satoshi Minagawa and Yoshikazu Sugimoto",
year = "2020",
month = "1",
day = "1",
doi = "10.1016/j.bbrc.2020.01.006",
language = "English",
journal = "Biochemical and Biophysical Research Communications",
issn = "0006-291X",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - STAT1 upregulates glutaminase and modulates amino acids and glutathione metabolism

AU - Kondo, Shingo

AU - Kato, Yu

AU - Minagawa, Satoshi

AU - Sugimoto, Yoshikazu

PY - 2020/1/1

Y1 - 2020/1/1

N2 - We previously reported the upregulation of cellular Glu and glutathione levels in human ABCB5- and murine Abcb5-transfected cells. Here, we demonstrate the upregulation of STAT1 and glutaminase (GLS) in ABCB5/Abcb5-transfected cells. Among a total of four ABCB5/Abcb5 high-expressing clones with docetaxel resistance, three of the clones expressed STAT1 and GLS highly and showed resistance to docetaxel and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. Neither STAT1 nor GLS upregulation was observed in the remaining ABCB5 high-expressing clone, as well as in another two ABCB5 low-expressing clones; these three clones did not show BSO resistance. The ABCB5/STAT1 high-expressing clones showed higher cellular levels of Ala, Glu, and Asp and lower cellular levels of Phe, Trp, Leu, Ile, Gly, Met, Tyr, Val, and His compared to the ABCB5/STAT1 low-expressing clones. The former clones also showed a higher resistance to Glu. The STAT1-transfected clones expressed high levels of GLS and the corresponding mRNA, suggesting the transactivation of GLS by STAT1. These clones showed resistance to Glu and BSO, similar to the ABCB5/STAT1 high-expressing clones. The cellular glutathione levels of the STAT1-transfected clones were significantly higher than that of the control. The STAT1-transfected clones also showed greater resistance to the effect of BSO on the cellular glutathione depletion compared to the control. These results demonstrate that STAT1 upregulates GLS and modulates amino acids and glutathione metabolism. Although we were unable to directly prove STAT1 upregulation by ABCB5, our results suggest that ABCB5 expression, directly or indirectly, leads to the overexpression of STAT1.

AB - We previously reported the upregulation of cellular Glu and glutathione levels in human ABCB5- and murine Abcb5-transfected cells. Here, we demonstrate the upregulation of STAT1 and glutaminase (GLS) in ABCB5/Abcb5-transfected cells. Among a total of four ABCB5/Abcb5 high-expressing clones with docetaxel resistance, three of the clones expressed STAT1 and GLS highly and showed resistance to docetaxel and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. Neither STAT1 nor GLS upregulation was observed in the remaining ABCB5 high-expressing clone, as well as in another two ABCB5 low-expressing clones; these three clones did not show BSO resistance. The ABCB5/STAT1 high-expressing clones showed higher cellular levels of Ala, Glu, and Asp and lower cellular levels of Phe, Trp, Leu, Ile, Gly, Met, Tyr, Val, and His compared to the ABCB5/STAT1 low-expressing clones. The former clones also showed a higher resistance to Glu. The STAT1-transfected clones expressed high levels of GLS and the corresponding mRNA, suggesting the transactivation of GLS by STAT1. These clones showed resistance to Glu and BSO, similar to the ABCB5/STAT1 high-expressing clones. The cellular glutathione levels of the STAT1-transfected clones were significantly higher than that of the control. The STAT1-transfected clones also showed greater resistance to the effect of BSO on the cellular glutathione depletion compared to the control. These results demonstrate that STAT1 upregulates GLS and modulates amino acids and glutathione metabolism. Although we were unable to directly prove STAT1 upregulation by ABCB5, our results suggest that ABCB5 expression, directly or indirectly, leads to the overexpression of STAT1.

KW - ABC transporter

KW - Buthionine sulfoximine

KW - Gamma-glutamylcysteine ligase

KW - Glutaminase

KW - Glutathione

KW - STAT1

UR - http://www.scopus.com/inward/record.url?scp=85077925952&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85077925952&partnerID=8YFLogxK

U2 - 10.1016/j.bbrc.2020.01.006

DO - 10.1016/j.bbrc.2020.01.006

M3 - Article

AN - SCOPUS:85077925952

JO - Biochemical and Biophysical Research Communications

JF - Biochemical and Biophysical Research Communications

SN - 0006-291X

ER -