Strong evidence of normal heat conduction in a one-dimensional quantum system

Research output: Contribution to journalArticle

84 Citations (Scopus)

Abstract

We investigate how the normal energy transport is realized in one-dimensional quantum systems using a quantum spin system. The direct investigation of local energy distribution under thermal gradient is made using the quantum master equation, and the mixing properties and the convergence of the Green-Kubo formula are investigated when the number of spin increases. We find that the autocorrelation function in the Green-Kubo formula decays as ∼ t-1.5 to a finite value which vanishes rapidly with the increase of the system size. As a result, the Green-Kubo formula converges to a finite value in the thermodynamic limit. These facts strongly support the realization of Fourier heat law in a quantum system.

Original languageEnglish
Pages (from-to)34-40
Number of pages7
JournalEurophysics Letters
Volume61
Issue number1
DOIs
Publication statusPublished - 2003 Jan
Externally publishedYes

Fingerprint

conductive heat transfer
autocorrelation
energy distribution
heat
gradients
thermodynamics
decay
energy

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Strong evidence of normal heat conduction in a one-dimensional quantum system. / Saitou, Keiji.

In: Europhysics Letters, Vol. 61, No. 1, 01.2003, p. 34-40.

Research output: Contribution to journalArticle

@article{efe35d40ed0948efba98ab46698a75f5,
title = "Strong evidence of normal heat conduction in a one-dimensional quantum system",
abstract = "We investigate how the normal energy transport is realized in one-dimensional quantum systems using a quantum spin system. The direct investigation of local energy distribution under thermal gradient is made using the quantum master equation, and the mixing properties and the convergence of the Green-Kubo formula are investigated when the number of spin increases. We find that the autocorrelation function in the Green-Kubo formula decays as ∼ t-1.5 to a finite value which vanishes rapidly with the increase of the system size. As a result, the Green-Kubo formula converges to a finite value in the thermodynamic limit. These facts strongly support the realization of Fourier heat law in a quantum system.",
author = "Keiji Saitou",
year = "2003",
month = "1",
doi = "10.1209/epl/i2003-00241-3",
language = "English",
volume = "61",
pages = "34--40",
journal = "EPL",
issn = "0295-5075",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - Strong evidence of normal heat conduction in a one-dimensional quantum system

AU - Saitou, Keiji

PY - 2003/1

Y1 - 2003/1

N2 - We investigate how the normal energy transport is realized in one-dimensional quantum systems using a quantum spin system. The direct investigation of local energy distribution under thermal gradient is made using the quantum master equation, and the mixing properties and the convergence of the Green-Kubo formula are investigated when the number of spin increases. We find that the autocorrelation function in the Green-Kubo formula decays as ∼ t-1.5 to a finite value which vanishes rapidly with the increase of the system size. As a result, the Green-Kubo formula converges to a finite value in the thermodynamic limit. These facts strongly support the realization of Fourier heat law in a quantum system.

AB - We investigate how the normal energy transport is realized in one-dimensional quantum systems using a quantum spin system. The direct investigation of local energy distribution under thermal gradient is made using the quantum master equation, and the mixing properties and the convergence of the Green-Kubo formula are investigated when the number of spin increases. We find that the autocorrelation function in the Green-Kubo formula decays as ∼ t-1.5 to a finite value which vanishes rapidly with the increase of the system size. As a result, the Green-Kubo formula converges to a finite value in the thermodynamic limit. These facts strongly support the realization of Fourier heat law in a quantum system.

UR - http://www.scopus.com/inward/record.url?scp=0037271187&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037271187&partnerID=8YFLogxK

U2 - 10.1209/epl/i2003-00241-3

DO - 10.1209/epl/i2003-00241-3

M3 - Article

AN - SCOPUS:0037271187

VL - 61

SP - 34

EP - 40

JO - EPL

JF - EPL

SN - 0295-5075

IS - 1

ER -