Abstract
Fertilization is a fundamental process in sexual reproduction, creating a new individual through the combination of male and female gametes. The IZUMO1 sperm membrane protein and its counterpart oocyte receptor JUNO have been identified as essential factors for sperm-oocyte interaction and fusion. However, the mechanism underlying their specific recognition remains poorly defined. Here, we show the crystal structures of human IZUMO1, JUNO and the IZUMO1-JUNO complex, establishing the structural basis for the IZUMO1-JUNO-mediated sperm-oocyte interaction. IZUMO1 exhibits an elongated rod-shaped structure comprised of a helical bundle IZUMO domain and an immunoglobulin-like domain that are each firmly anchored to an intervening β-hairpin region through conserved disulfide bonds. The central β-hairpin region of IZUMO1 provides the main platform for JUNO binding, while the surface located behind the putative JUNO ligand binding pocket is involved in IZUMO1 binding. Structure-based mutagenesis analysis confirms the biological importance of the IZUMO1-JUNO interaction. This structure provides a major step towards elucidating an essential phase of fertilization and it will contribute to the development of new therapeutic interventions for fertility, such as contraceptive agents.
Original language | English |
---|---|
Pages (from-to) | 566-569 |
Number of pages | 4 |
Journal | Nature |
Volume | 534 |
Issue number | 7608 |
DOIs | |
Publication status | Published - 2016 Jun 15 |
Externally published | Yes |
ASJC Scopus subject areas
- General