Abstract
Let G be a 3-connected graph with n vertices on a non-spherical closed surface Fk2 of Euler genus k with sufficiently large representativity. In this paper, we first study a new cutting method which produces a spanning planar subgraph of G with a certain good property. This is used to show that such a graph G has a spanning 4-tree with at most max{2k - 5, 0} vertices of degree 4. Using this result, we prove that for any integer t, if n is sufficiently large, then G has a connected subgraph with t vertices whose degree sum is at most 8t - 1. We also give a nearly sharp bound for the projective plane, torus and Klein bottle. Furthermore, using our cutting method, we prove that a 3-connected graph G on Fk2 with high representativity has a 3-walk in which at most max{2k - 4, 0} vertices are visited three times, and an 8-covering with at most max{4k - 8, 0} vertices of degree 7 or 8. Moreover, a 4-connected G has a 4-covering with at most max[4k - 6, 0} vertices of degree 4.
Original language | English |
---|---|
Pages (from-to) | 207-229 |
Number of pages | 23 |
Journal | Journal of Combinatorial Theory. Series B |
Volume | 89 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2003 Nov |
ASJC Scopus subject areas
- Theoretical Computer Science
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics