Superconductivity and charge density wave under a time-dependent periodic field in the one-dimensional attractive Hubbard model

Ryo Fujiuchi, Tatsuya Kaneko, Koudai Sugimoto, Seiji Yunoki, Seiji Yunoki, Seiji Yunoki, Yukinori Ohta

Research output: Contribution to journalArticle

Abstract

We investigate the competition between superconductivity (SC) and charge density wave (CDW) under a time-dependent periodic field in the attractive Hubbard model. By employing the time-dependent exact diagonalization method, we show that the driving frequency and amplitude of the external field can control the enhancement of either the superconducting pair or the CDW correlation in the system, for which SC and CDW are degenerate in the ground state of the half-filled attractive Hubbard model in the absence of the field. In the strong-coupling limit of the attractive Hubbard interaction, the controllability is characterized by the anisotropic interaction of the effective model. The anisotropy is induced by the external field and lifts the degeneracy of SC and CDW. We find that the enhancement or suppression of the superconducting pair and CDW correlations in the periodically driven attractive Hubbard model can be well interpreted by the quench dynamics of the effective model derived in the strong-coupling limit.

Original languageEnglish
Article number235122
JournalPhysical Review B
Volume101
Issue number23
DOIs
Publication statusPublished - 2020 Jun 15

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Superconductivity and charge density wave under a time-dependent periodic field in the one-dimensional attractive Hubbard model'. Together they form a unique fingerprint.

  • Cite this