Surface code quantum computing by lattice surgery

Clare Horsman, Austin G. Fowler, Simon Devitt, Rodney D Van Meter

Research output: Contribution to journalArticle

81 Citations (Scopus)

Abstract

In recent years, surface codes have become a leading method for quantum error correction in theoretical large-scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural two-dimensional nearest-neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect-based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance-3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.

Original languageEnglish
Article number123011
JournalNew Journal of Physics
Volume14
DOIs
Publication statusPublished - 2012 Dec

Fingerprint

quantum computation
surgery
logic
resources
coding
communication
injection
thresholds
defects

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Surface code quantum computing by lattice surgery. / Horsman, Clare; Fowler, Austin G.; Devitt, Simon; Van Meter, Rodney D.

In: New Journal of Physics, Vol. 14, 123011, 12.2012.

Research output: Contribution to journalArticle

Horsman, Clare ; Fowler, Austin G. ; Devitt, Simon ; Van Meter, Rodney D. / Surface code quantum computing by lattice surgery. In: New Journal of Physics. 2012 ; Vol. 14.
@article{5428fc93fd7e465c910ecc769cdaa5e7,
title = "Surface code quantum computing by lattice surgery",
abstract = "In recent years, surface codes have become a leading method for quantum error correction in theoretical large-scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural two-dimensional nearest-neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect-based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance-3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.",
author = "Clare Horsman and Fowler, {Austin G.} and Simon Devitt and {Van Meter}, {Rodney D}",
year = "2012",
month = "12",
doi = "10.1088/1367-2630/14/12/123011",
language = "English",
volume = "14",
journal = "New Journal of Physics",
issn = "1367-2630",
publisher = "IOP Publishing Ltd.",

}

TY - JOUR

T1 - Surface code quantum computing by lattice surgery

AU - Horsman, Clare

AU - Fowler, Austin G.

AU - Devitt, Simon

AU - Van Meter, Rodney D

PY - 2012/12

Y1 - 2012/12

N2 - In recent years, surface codes have become a leading method for quantum error correction in theoretical large-scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural two-dimensional nearest-neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect-based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance-3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.

AB - In recent years, surface codes have become a leading method for quantum error correction in theoretical large-scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural two-dimensional nearest-neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect-based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance-3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.

UR - http://www.scopus.com/inward/record.url?scp=84871874751&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871874751&partnerID=8YFLogxK

U2 - 10.1088/1367-2630/14/12/123011

DO - 10.1088/1367-2630/14/12/123011

M3 - Article

VL - 14

JO - New Journal of Physics

JF - New Journal of Physics

SN - 1367-2630

M1 - 123011

ER -