Synthesis of 5-Hydroxy-3′,4′,7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance

Research output: Contribution to journalArticle

Abstract

3′,4′,7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3′,4′-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50). Of the synthesized compounds, the reversal effect of 5-hydroxy-3′,4′,7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3′,4′,7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3′,4′-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01–10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.

Original languageEnglish
JournalChemBioChem
DOIs
Publication statusAccepted/In press - 2018 Jan 1

Fingerprint

Drug Resistance
Protein Binding
Adenosine Triphosphate
irinotecan
Breast Neoplasms
Pharmaceutical Preparations
Proteins
flavone
Derivatives
Flavones
Fluorine
Skeleton
Leukemia
Coloring Agents
Western Blotting
Staining and Labeling
Atoms
5-hydroxy-3',4',6,7-tetramethoxyflavone

Keywords

  • antitumor agents
  • BCRP/ABCG2
  • drug resistance
  • structure–activity relationships
  • substituted flavones

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Organic Chemistry

Cite this

@article{d4f6b321fe9543bfae015af0c1efc2c1,
title = "Synthesis of 5-Hydroxy-3′,4′,7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance",
abstract = "3′,4′,7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3′,4′-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50). Of the synthesized compounds, the reversal effect of 5-hydroxy-3′,4′,7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3′,4′,7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3′,4′-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01–10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.",
keywords = "antitumor agents, BCRP/ABCG2, drug resistance, structure–activity relationships, substituted flavones",
author = "Ryuji Tsunekawa and Kazuhiro Katayama and Kengo Hanaya and Shuhei Higashibayashi and Yoshikazu Sugimoto and Takeshi Sugai",
year = "2018",
month = "1",
day = "1",
doi = "10.1002/cbic.201800431",
language = "English",
journal = "ChemBioChem",
issn = "1439-4227",
publisher = "Wiley-VCH Verlag",

}

TY - JOUR

T1 - Synthesis of 5-Hydroxy-3′,4′,7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance

AU - Tsunekawa, Ryuji

AU - Katayama, Kazuhiro

AU - Hanaya, Kengo

AU - Higashibayashi, Shuhei

AU - Sugimoto, Yoshikazu

AU - Sugai, Takeshi

PY - 2018/1/1

Y1 - 2018/1/1

N2 - 3′,4′,7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3′,4′-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50). Of the synthesized compounds, the reversal effect of 5-hydroxy-3′,4′,7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3′,4′,7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3′,4′-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01–10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.

AB - 3′,4′,7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3′,4′-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50). Of the synthesized compounds, the reversal effect of 5-hydroxy-3′,4′,7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3′,4′,7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3′,4′-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01–10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.

KW - antitumor agents

KW - BCRP/ABCG2

KW - drug resistance

KW - structure–activity relationships

KW - substituted flavones

UR - http://www.scopus.com/inward/record.url?scp=85054566501&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054566501&partnerID=8YFLogxK

U2 - 10.1002/cbic.201800431

DO - 10.1002/cbic.201800431

M3 - Article

C2 - 30187992

AN - SCOPUS:85054566501

JO - ChemBioChem

JF - ChemBioChem

SN - 1439-4227

ER -