System identification of evoked mechanomyogram in isometric contraction

Yasuhiro Shinada, Takanori Uchiyama

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The purpose of this study was to clarify the elasticity of the anterior tibial muscle depending on the contraction level. System identification technique was applied to an evoked mechanomyogram (MMG) and dorsiflex torque at a low level of isometric contraction. Electrical stimulation was applied to the common peroneal nerve when the subject maintained contraction levels at 0 (resting state), 5, 10, 20, and 30% of the maximum voluntary contraction. The evoked MMG and dorsiflex torque were measured with an acceleration sensor and a strain gauge load cell, respectively. Stimulation was conducted using 31 monopolar rectangle pulses with an interpulse interval of 1 s, and at supramaximal strength. The evoked MMGs and dorsiflex torques were averaged synchronously. System identification was performed using a singular value decomposition method. The undamped natural frequency of the system was calculated from the poles of the transfer function. The evoked MMG and dorsiflex torque in isometric contraction approximated well with a sixth-and a second-order model, respectively. The MMG peak-to-peak and the dorsiflex torque amplitude during isometric contraction decreased as the contraction level increased. The highest and intermediate natural frequencies of the sixth-order model of the evoked MMG (f1, and f2, respectively) tended to decrease as the contraction level increased. These decreases might reflect extension of the subcutaneous tissue. The lowest undamped natural frequency (f3) increased as the contraction level increased. This increase might reflect an increase in muscle stiffness. In conclusion, the muscle elasticity during isometric contraction was elucidated by the proposed method.

Original languageEnglish
Pages (from-to)69-75
Number of pages7
JournalTransactions of Japanese Society for Medical and Biological Engineering
Volume53
Issue number2
DOIs
Publication statusPublished - 2015 Jun 1

Fingerprint

Identification (control systems)
Torque
Muscle
Natural frequencies
Elasticity
Singular value decomposition
Strain gages
Transfer functions
Poles
Stiffness
Tissue
Sensors

Keywords

  • Isometric contraction
  • Mechanomyogram
  • System identification

ASJC Scopus subject areas

  • Biomedical Engineering

Cite this

System identification of evoked mechanomyogram in isometric contraction. / Shinada, Yasuhiro; Uchiyama, Takanori.

In: Transactions of Japanese Society for Medical and Biological Engineering, Vol. 53, No. 2, 01.06.2015, p. 69-75.

Research output: Contribution to journalArticle

@article{d14242f9f2fd404880500b17c0436a10,
title = "System identification of evoked mechanomyogram in isometric contraction",
abstract = "The purpose of this study was to clarify the elasticity of the anterior tibial muscle depending on the contraction level. System identification technique was applied to an evoked mechanomyogram (MMG) and dorsiflex torque at a low level of isometric contraction. Electrical stimulation was applied to the common peroneal nerve when the subject maintained contraction levels at 0 (resting state), 5, 10, 20, and 30{\%} of the maximum voluntary contraction. The evoked MMG and dorsiflex torque were measured with an acceleration sensor and a strain gauge load cell, respectively. Stimulation was conducted using 31 monopolar rectangle pulses with an interpulse interval of 1 s, and at supramaximal strength. The evoked MMGs and dorsiflex torques were averaged synchronously. System identification was performed using a singular value decomposition method. The undamped natural frequency of the system was calculated from the poles of the transfer function. The evoked MMG and dorsiflex torque in isometric contraction approximated well with a sixth-and a second-order model, respectively. The MMG peak-to-peak and the dorsiflex torque amplitude during isometric contraction decreased as the contraction level increased. The highest and intermediate natural frequencies of the sixth-order model of the evoked MMG (f1, and f2, respectively) tended to decrease as the contraction level increased. These decreases might reflect extension of the subcutaneous tissue. The lowest undamped natural frequency (f3) increased as the contraction level increased. This increase might reflect an increase in muscle stiffness. In conclusion, the muscle elasticity during isometric contraction was elucidated by the proposed method.",
keywords = "Isometric contraction, Mechanomyogram, System identification",
author = "Yasuhiro Shinada and Takanori Uchiyama",
year = "2015",
month = "6",
day = "1",
doi = "10.11239/jsmbe.53.69",
language = "English",
volume = "53",
pages = "69--75",
journal = "BME = Bio medical engineering / henshu, Nihon ME Gakkai",
issn = "1347-443X",
publisher = "Nihon M E Gakkai",
number = "2",

}

TY - JOUR

T1 - System identification of evoked mechanomyogram in isometric contraction

AU - Shinada, Yasuhiro

AU - Uchiyama, Takanori

PY - 2015/6/1

Y1 - 2015/6/1

N2 - The purpose of this study was to clarify the elasticity of the anterior tibial muscle depending on the contraction level. System identification technique was applied to an evoked mechanomyogram (MMG) and dorsiflex torque at a low level of isometric contraction. Electrical stimulation was applied to the common peroneal nerve when the subject maintained contraction levels at 0 (resting state), 5, 10, 20, and 30% of the maximum voluntary contraction. The evoked MMG and dorsiflex torque were measured with an acceleration sensor and a strain gauge load cell, respectively. Stimulation was conducted using 31 monopolar rectangle pulses with an interpulse interval of 1 s, and at supramaximal strength. The evoked MMGs and dorsiflex torques were averaged synchronously. System identification was performed using a singular value decomposition method. The undamped natural frequency of the system was calculated from the poles of the transfer function. The evoked MMG and dorsiflex torque in isometric contraction approximated well with a sixth-and a second-order model, respectively. The MMG peak-to-peak and the dorsiflex torque amplitude during isometric contraction decreased as the contraction level increased. The highest and intermediate natural frequencies of the sixth-order model of the evoked MMG (f1, and f2, respectively) tended to decrease as the contraction level increased. These decreases might reflect extension of the subcutaneous tissue. The lowest undamped natural frequency (f3) increased as the contraction level increased. This increase might reflect an increase in muscle stiffness. In conclusion, the muscle elasticity during isometric contraction was elucidated by the proposed method.

AB - The purpose of this study was to clarify the elasticity of the anterior tibial muscle depending on the contraction level. System identification technique was applied to an evoked mechanomyogram (MMG) and dorsiflex torque at a low level of isometric contraction. Electrical stimulation was applied to the common peroneal nerve when the subject maintained contraction levels at 0 (resting state), 5, 10, 20, and 30% of the maximum voluntary contraction. The evoked MMG and dorsiflex torque were measured with an acceleration sensor and a strain gauge load cell, respectively. Stimulation was conducted using 31 monopolar rectangle pulses with an interpulse interval of 1 s, and at supramaximal strength. The evoked MMGs and dorsiflex torques were averaged synchronously. System identification was performed using a singular value decomposition method. The undamped natural frequency of the system was calculated from the poles of the transfer function. The evoked MMG and dorsiflex torque in isometric contraction approximated well with a sixth-and a second-order model, respectively. The MMG peak-to-peak and the dorsiflex torque amplitude during isometric contraction decreased as the contraction level increased. The highest and intermediate natural frequencies of the sixth-order model of the evoked MMG (f1, and f2, respectively) tended to decrease as the contraction level increased. These decreases might reflect extension of the subcutaneous tissue. The lowest undamped natural frequency (f3) increased as the contraction level increased. This increase might reflect an increase in muscle stiffness. In conclusion, the muscle elasticity during isometric contraction was elucidated by the proposed method.

KW - Isometric contraction

KW - Mechanomyogram

KW - System identification

UR - http://www.scopus.com/inward/record.url?scp=84934275323&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84934275323&partnerID=8YFLogxK

U2 - 10.11239/jsmbe.53.69

DO - 10.11239/jsmbe.53.69

M3 - Article

AN - SCOPUS:84934275323

VL - 53

SP - 69

EP - 75

JO - BME = Bio medical engineering / henshu, Nihon ME Gakkai

JF - BME = Bio medical engineering / henshu, Nihon ME Gakkai

SN - 1347-443X

IS - 2

ER -