TY - JOUR
T1 - T1rho and T2 relaxation times of the normal adult knee meniscus at 3T
T2 - analysis of zonal differences
AU - Takao, Shoichiro
AU - Nguyen, Tan B.
AU - Yu, Hon J.
AU - Hagiwara, Shigeo
AU - Kaneko, Yasuhito
AU - Nozaki, Taiki
AU - Iwamoto, Seiji
AU - Otomo, Maki
AU - Schwarzkopf, Ran
AU - Yoshioka, Hiroshi
N1 - Funding Information:
This study has received funding by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1 TR000153.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/5/18
Y1 - 2017/5/18
N2 - Background: Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Methods: Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. Results: In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p < 0.0001 and 96.5 ms vs 91.7 ms on SPGR, p = 0.004). In vertical zonal analysis, T1rho relaxation times of the white zone tended to be higher than those of the red zone, and this difference was statistically significant in the posterior horn of the medical meniscus (88.4 ms vs 77.1 ms on b-FFE, p < 0.001 and 104.9 ms vs 96.8 ms on SPGR, p =0.001). Likewise, T2 relaxation times of the superficial zone were significantly higher than those of the deep zone (80.4 ms vs 74.4 ms in the medial meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p < 0.001) and lateral meniscus anterior horn (104.6 ms vs 84.2 ms, p < 0.0001). Inter-class and intra-class correlation coefficients were excellent (>0.74) or good (0.60-0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. Conclusions: There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.
AB - Background: Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Methods: Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. Results: In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p < 0.0001 and 96.5 ms vs 91.7 ms on SPGR, p = 0.004). In vertical zonal analysis, T1rho relaxation times of the white zone tended to be higher than those of the red zone, and this difference was statistically significant in the posterior horn of the medical meniscus (88.4 ms vs 77.1 ms on b-FFE, p < 0.001 and 104.9 ms vs 96.8 ms on SPGR, p =0.001). Likewise, T2 relaxation times of the superficial zone were significantly higher than those of the deep zone (80.4 ms vs 74.4 ms in the medial meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p < 0.001) and lateral meniscus anterior horn (104.6 ms vs 84.2 ms, p < 0.0001). Inter-class and intra-class correlation coefficients were excellent (>0.74) or good (0.60-0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. Conclusions: There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.
KW - Knee
KW - Magnetic resonance imaging
KW - Meniscus
KW - T1rho
KW - T2 mapping
KW - Zonal differentiation
UR - http://www.scopus.com/inward/record.url?scp=85019629354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019629354&partnerID=8YFLogxK
U2 - 10.1186/s12891-017-1560-y
DO - 10.1186/s12891-017-1560-y
M3 - Article
C2 - 28521823
AN - SCOPUS:85019629354
SN - 1471-2474
VL - 18
SP - 1
EP - 9
JO - BMC Musculoskeletal Disorders
JF - BMC Musculoskeletal Disorders
IS - 1
M1 - 202
ER -