TET2 as an epigenetic master regulator for normal and malignant hematopoiesis.

Hideaki Nakajima, Hiroyoshi Kunimoto

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten-eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5-methylcytosine to 5-hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET-mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2-hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O-linked β-N-acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.

Original languageEnglish
Pages (from-to)1093-1099
Number of pages7
JournalCancer Science
Volume105
Issue number9
DOIs
Publication statusPublished - 2014

Fingerprint

Hematopoiesis
Epigenomics
Cytosine
Hematologic Neoplasms
Mutation
Hematopoietic Stem Cells
Leukemia
5-Methylcytosine
Genes
Isocitrate Dehydrogenase
Genetic Translocation
Myelodysplastic Syndromes
Protein Transport
DNA Methylation
Chromatin
Lymphoma
Homeostasis
Stem Cells
Clone Cells
DNA

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. / Nakajima, Hideaki; Kunimoto, Hiroyoshi.

In: Cancer Science, Vol. 105, No. 9, 2014, p. 1093-1099.

Research output: Contribution to journalArticle

Nakajima, Hideaki ; Kunimoto, Hiroyoshi. / TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. In: Cancer Science. 2014 ; Vol. 105, No. 9. pp. 1093-1099.
@article{144ff0ca94f94e84accb97a715711cd9,
title = "TET2 as an epigenetic master regulator for normal and malignant hematopoiesis.",
abstract = "DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten-eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5-methylcytosine to 5-hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET-mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2-hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O-linked β-N-acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.",
author = "Hideaki Nakajima and Hiroyoshi Kunimoto",
year = "2014",
doi = "10.1111/cas.12484",
language = "English",
volume = "105",
pages = "1093--1099",
journal = "Cancer Science",
issn = "1347-9032",
publisher = "Wiley-Blackwell",
number = "9",

}

TY - JOUR

T1 - TET2 as an epigenetic master regulator for normal and malignant hematopoiesis.

AU - Nakajima, Hideaki

AU - Kunimoto, Hiroyoshi

PY - 2014

Y1 - 2014

N2 - DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten-eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5-methylcytosine to 5-hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET-mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2-hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O-linked β-N-acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.

AB - DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten-eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5-methylcytosine to 5-hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET-mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2-hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O-linked β-N-acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.

UR - http://www.scopus.com/inward/record.url?scp=84910003699&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84910003699&partnerID=8YFLogxK

U2 - 10.1111/cas.12484

DO - 10.1111/cas.12484

M3 - Article

VL - 105

SP - 1093

EP - 1099

JO - Cancer Science

JF - Cancer Science

SN - 1347-9032

IS - 9

ER -