The geometry on Hyper-Kähler manifolds of type A<inf>∞</inf>

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Hyper-Kähler manifolds of type A<inf>∞</inf> are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.

Original languageEnglish
Title of host publicationSpringer Proceedings in Mathematics and Statistics
PublisherSpringer New York LLC
Pages309-317
Number of pages9
Volume106
ISBN (Print)9784431552147
DOIs
Publication statusPublished - 2014
EventSatellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry - Daejeon, Korea, Republic of
Duration: 2014 Aug 102014 Aug 12

Other

OtherSatellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry
CountryKorea, Republic of
CityDaejeon
Period14/8/1014/8/12

Fingerprint

Flat Manifold
Symplectic Structure
Asymptotic Behavior
Review

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Hattori, K. (2014). The geometry on Hyper-Kähler manifolds of type A<inf>∞</inf> . In Springer Proceedings in Mathematics and Statistics (Vol. 106, pp. 309-317). Springer New York LLC. https://doi.org/10.1007/978-4-431-55215-4_27

The geometry on Hyper-Kähler manifolds of type A<inf>∞</inf> . / Hattori, Kota.

Springer Proceedings in Mathematics and Statistics. Vol. 106 Springer New York LLC, 2014. p. 309-317.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hattori, K 2014, The geometry on Hyper-Kähler manifolds of type A<inf>∞</inf> . in Springer Proceedings in Mathematics and Statistics. vol. 106, Springer New York LLC, pp. 309-317, Satellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry, Daejeon, Korea, Republic of, 14/8/10. https://doi.org/10.1007/978-4-431-55215-4_27
Hattori K. The geometry on Hyper-Kähler manifolds of type A<inf>∞</inf> . In Springer Proceedings in Mathematics and Statistics. Vol. 106. Springer New York LLC. 2014. p. 309-317 https://doi.org/10.1007/978-4-431-55215-4_27
Hattori, Kota. / The geometry on Hyper-Kähler manifolds of type A<inf>∞</inf> . Springer Proceedings in Mathematics and Statistics. Vol. 106 Springer New York LLC, 2014. pp. 309-317
@inproceedings{c52f587731c64b968f39df21555f595a,
title = "The geometry on Hyper-K{\"a}hler manifolds of type A∞",
abstract = "Hyper-K{\"a}hler manifolds of type A∞ are noncompact complete Ricci-flat K{\"a}hler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.",
author = "Kota Hattori",
year = "2014",
doi = "10.1007/978-4-431-55215-4_27",
language = "English",
isbn = "9784431552147",
volume = "106",
pages = "309--317",
booktitle = "Springer Proceedings in Mathematics and Statistics",
publisher = "Springer New York LLC",

}

TY - GEN

T1 - The geometry on Hyper-Kähler manifolds of type A∞

AU - Hattori, Kota

PY - 2014

Y1 - 2014

N2 - Hyper-Kähler manifolds of type A∞ are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.

AB - Hyper-Kähler manifolds of type A∞ are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.

UR - http://www.scopus.com/inward/record.url?scp=84927628813&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84927628813&partnerID=8YFLogxK

U2 - 10.1007/978-4-431-55215-4_27

DO - 10.1007/978-4-431-55215-4_27

M3 - Conference contribution

SN - 9784431552147

VL - 106

SP - 309

EP - 317

BT - Springer Proceedings in Mathematics and Statistics

PB - Springer New York LLC

ER -