The geometry on Hyper-Kähler manifolds of type A

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Hyper-Kähler manifolds of type A are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.

Original languageEnglish
Title of host publicationReal and Complex Submanifolds
EditorsYoung Jin Suh, Yoshihiro Ohnita, Hyunjin Lee, Jürgen Berndt, Byung Hak Kim
PublisherSpringer New York LLC
Pages309-317
Number of pages9
ISBN (Electronic)9784431552147
DOIs
Publication statusPublished - 2014 Jan 1
EventSatellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry - Daejeon, Korea, Republic of
Duration: 2014 Aug 102014 Aug 12

Publication series

NameSpringer Proceedings in Mathematics and Statistics
Volume106
ISSN (Print)2194-1009
ISSN (Electronic)2194-1017

Other

OtherSatellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry
CountryKorea, Republic of
CityDaejeon
Period14/8/1014/8/12

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'The geometry on Hyper-Kähler manifolds of type A<sub>∞</sub>'. Together they form a unique fingerprint.

  • Cite this

    Hattori, K. (2014). The geometry on Hyper-Kähler manifolds of type A In Y. J. Suh, Y. Ohnita, H. Lee, J. Berndt, & B. H. Kim (Eds.), Real and Complex Submanifolds (pp. 309-317). (Springer Proceedings in Mathematics and Statistics; Vol. 106). Springer New York LLC. https://doi.org/10.1007/978-4-431-55215-4_27