Abstract
We consider the incompressible limit of the compressible Euler equation in the half-space ℝn+. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data v∞0 do not satisfy the condition '∇·v∞0 = 0', then the initial layer will appear.
Original language | English |
---|---|
Pages (from-to) | 945-958 |
Number of pages | 14 |
Journal | Mathematical Methods in the Applied Sciences |
Volume | 20 |
Issue number | 11 |
Publication status | Published - 1997 Jul 25 |
Externally published | Yes |
Fingerprint
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics
Cite this
The incompressible limit and the initial layer of the compressible Euler equation in ℝn+. / Iguchi, Tatsuo.
In: Mathematical Methods in the Applied Sciences, Vol. 20, No. 11, 25.07.1997, p. 945-958.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - The incompressible limit and the initial layer of the compressible Euler equation in ℝn+
AU - Iguchi, Tatsuo
PY - 1997/7/25
Y1 - 1997/7/25
N2 - We consider the incompressible limit of the compressible Euler equation in the half-space ℝn+. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data v∞0 do not satisfy the condition '∇·v∞0 = 0', then the initial layer will appear.
AB - We consider the incompressible limit of the compressible Euler equation in the half-space ℝn+. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data v∞0 do not satisfy the condition '∇·v∞0 = 0', then the initial layer will appear.
UR - http://www.scopus.com/inward/record.url?scp=4143051326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4143051326&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:4143051326
VL - 20
SP - 945
EP - 958
JO - Mathematical Methods in the Applied Sciences
JF - Mathematical Methods in the Applied Sciences
SN - 0170-4214
IS - 11
ER -