TY - GEN
T1 - The integration of data streams with probabilities and relational database using Bayesian networks
AU - Sato, Ryo
AU - Kawashima, Hideyuki
AU - Kitagawa, Hiroyuki
PY - 2008/1/1
Y1 - 2008/1/1
N2 - As sensor devices develop, not only the amount of uncertain sensor data streams is dramatically increasing, but also the streams are processed in a variety of ways. We believe one of important ways is to reason contexts from them, and the integration of dynamic reasoning result and static data in databases. This paper proposes the integration of probabilistic data streams and relational database by using Bayesian Networks which is one ofthe most useful techniques for reasoning uncertain contexts in the physical world. And this paper has three concrete contributions. For the first contribution, we model the Bayesian Networks as an abstract data type in the object relational database. Bayesian Networks are stored as objects, and we define new operator to integrate Bayesian networks and relational database. Since Bayesian Networks has the graphical model, it does not directly fit relational database that is constituted of relations. Our new operators allows to extract a part of data from Bayesian Networks in the form of relations. For the second contribution, to allow continuous queries over data streams generated from the Bayesian Networks, our proposed method introduces a new concept, lifetime, into the Bayesian Networks. Although the Bayesian Networks is a famous reasoning method, it is not yet treated in data stream systems. The lifespan allows a Bayesian Networks to detect multiple events for each evaluation ofa continuous query. For the third contribution, we proposed efficient methods for probability values propagations. The methods omits unnecessary update propagations for continuous queries. The result of experiments clearly showed that our proposed algorithm outpeiforms usual algorithms.
AB - As sensor devices develop, not only the amount of uncertain sensor data streams is dramatically increasing, but also the streams are processed in a variety of ways. We believe one of important ways is to reason contexts from them, and the integration of dynamic reasoning result and static data in databases. This paper proposes the integration of probabilistic data streams and relational database by using Bayesian Networks which is one ofthe most useful techniques for reasoning uncertain contexts in the physical world. And this paper has three concrete contributions. For the first contribution, we model the Bayesian Networks as an abstract data type in the object relational database. Bayesian Networks are stored as objects, and we define new operator to integrate Bayesian networks and relational database. Since Bayesian Networks has the graphical model, it does not directly fit relational database that is constituted of relations. Our new operators allows to extract a part of data from Bayesian Networks in the form of relations. For the second contribution, to allow continuous queries over data streams generated from the Bayesian Networks, our proposed method introduces a new concept, lifetime, into the Bayesian Networks. Although the Bayesian Networks is a famous reasoning method, it is not yet treated in data stream systems. The lifespan allows a Bayesian Networks to detect multiple events for each evaluation ofa continuous query. For the third contribution, we proposed efficient methods for probability values propagations. The methods omits unnecessary update propagations for continuous queries. The result of experiments clearly showed that our proposed algorithm outpeiforms usual algorithms.
UR - http://www.scopus.com/inward/record.url?scp=67650660734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650660734&partnerID=8YFLogxK
U2 - 10.1109/MDMW.2008.25
DO - 10.1109/MDMW.2008.25
M3 - Conference contribution
AN - SCOPUS:67650660734
SN - 9781424444847
T3 - 2008 9th International Conference on Mobile Data Management Workshops, MDMW 2008
SP - 114
EP - 121
BT - 2008 9th International Conference on Mobile Data Management Workshops, MDMW 2008
PB - IEEE Computer Society
T2 - 2008 9th International Conference on Mobile Data Management Workshops, MDMW 2008
Y2 - 27 April 2008 through 30 April 2008
ER -